Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






Операції над множинами

Розглянемо дві множини А і В та введемо низку операцій над ними. Для графічної ілюстрації використовують діаграми (кола) Ейлера. Для зображення множини на площині креслять замкнену лінію із заштрихованою внутрішньою областю (найчастіше – це коло, звідси й назва відповідного інструмента, що широко застосовується в теорії множин).

Об’єднання А і В – множина, що складається з усіх елементів множини А, всіх елементів множини В і не містить ніяких інших елементів (рис. 1), тобто

А È В = {x | x Î А або x Î В}.

 

 

Рис. 1

 

Перетин А і В – множина, що складається з тих і тільки з тих елементів, які належать одночасно множині А та множині В (рис. 2), тобто

 

А Ç В = {x | x Î А і x Î В}.

 

 

Рис. 2

 

Різниця А і В (відносне доповнення) – множина, що складається з тих і тільки тих елементів, які належать множині А й не належать множині В (рис. 3), тобто

 

А \ В = {x | x Î А і x Ï В}.

 

Рис. 3

 

Диз’юнктивна сума А і В (симетрична різниця) – множина, що складається усіх елементів А, які не належать множині В, й усіх елементів В, які не належать множині А, та яка не містить ніяких інших елементів (рис. 4), тобто

 

А Å В = {x | (x Î А і x Ï В) або (x Î В і x Ï А)}.

 

 

Рис. 4

 

Доповнення множини.

Звичайно, вже в означенні конкретної множини явно або неявно обмежується сукупність об’єктів, що є допустимими (слони – серед тварин, натуральні числа – серед цілих або дійсних залежно від контексту). Зручно сукупність допустимих об’єктів зафіксувати явно та вважати, що множини, які розглядаються, складаються з елементів цієї сукупності. Її називають основною множиною (універсумом) і позначають U. Універсум U арифметики – числа, універсум U зоології – тварини і т.д. Будь-яку множину розглядатимемо у зв’язку з універсумом, який на діаграмах Ейлера асоціюватимемо з прямокутником на площині, всередині якого зображатимемо множини (рис. 5).

 

 

Рис. 5

 

Доповнення множини А – це множина, що містить усі елементи універсуму, за винятком елементів А (рис. 6), тобто .

 

 

Рис.6

Множина А називається підмножиною множини В, якщо кожен елемент А є елементом В. Для позначення цього факту вводиться знак Ì - символ строгого включення (або Í - символ нестрогого включення) (рис. 7). Якщо необхідно підкреслити, що множина В містить також інші елементи, крім елементів множини А, то використовують символ строгого включення А Ì В.

Дві множини рівні, якщо вони складаються з одних і тих самих елементів. Справджується таке: А = В тоді і тільки тоді, коли А Í В і В Í А.

 

Рис. 7

 

Окремо розглянемо ще одну дуже важливу операцію над множинами.

Декартовим (прямим) добутком множин A і B (записується A´B) називається множина всіх пар (a,b), в яких перша компонента належить множині A (aÎA), а друга - множині B (bÎB).

Тобто

A´B = {(a,b) | aÎA і bÎB }

Декартовий добуток природно узагальнюється на випадок довільної скінченної сукупності множин. Якщо A1, A2,..., An - множини, то їхнім декартовим добутком називається множина

D = { (a1,a2,...,an) | a1ÎA1, a2ÎA2,..., anÎAn },

яка складається з усіх наборів (a1,a2,...,an), в кожному з яких i-й член, що називається i-ю координатою або i-ю компонентою набору, належить множині Ai, i=1,2,...,n. Декартовий добуток позначається через A1´ A2´...´ An.

Набір (a1,a2,...,an), щоб відрізнити його від множини, яка складається з елементів a1,a2,...,an, записують не у фігурних, а в круглих дужках і називають кортежем, вектором або впорядкованим набором. Довжиною кортежу називають кількість його координат. Два кортежі (a1,a2,...,an) і (b1,b2,...,bn) однакової довжини вважаються рівнимитоді і тільки тоді, коли рівні їхні відповідні координати, тобто ai=bi, i=1,2,...,n. Отже, набори (a,b,c) і (a,c,b) вважаються різними, в той час як множини {a,b,c} і {a,c,b} - рівні між собою.

Декартовий добуток множини A на себе n разів, тобто множину A´A´...´A називають n-м декартовим (або прямим) степенем множини A і позначають An.

Прийнято вважати, що A0 = Æ (n=0) і A1 = A (n=1).

Наприклад, якщо A = {a,b} і B = {b,c,d}, то

A´B = {(a,b),(a,c),(a,d),(b,b),(b,c),(b,d)},

A2 = {(a,a),(a,b),(b,a),(b,b)}.

Якщо R - множина дійсних чисел або множина точок координатної прямої, то R2 - це множина пар (a,b), де a,bÎR, або множина точок координатної площини.

Координатне зображення точок площини вперше було запропоновано французьким математиком і філософом Рене Декартом, тому введена операція над множинами і називається декартовим добутком.

Множину, елементами якої є всі підмножини множини А, називають множиною підмножин множини А (або булеаном множини А) і позначають Р(А). Так, для триелементної множини А = {a, b, c} маємо P(A)={Æ, {a}, {b}, {c}, {a, b},{b, c}, {a, c}, {a, b, c}}. У разі скінченної множини А з n елементів, множина підмножин Р(А) містить 2n елементів.


Читайте також:

  1. Активні операції банків
  2. Активні операції комерційних банків
  3. Алгебраїчні операції
  4. Арифметичні операції
  5. Арифметичні операції в різних системах числення
  6. Арифметичні операції над цілими числами
  7. Банк і його операції. Правова природа банківської діяльності
  8. Бартерні операції
  9. Біржові операції.
  10. Біржові операції. Котирування цін на біржі
  11. Валютні операції комерційних банків України
  12. Валютні операції.




Переглядів: 1455

<== попередня сторінка | наступна сторінка ==>
Поняття множини. Способи задання множин | Алгебра множин

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.005 сек.