Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Додавання, віднімання, множення і ділення цілих чисел. Теореми про існування та єдиність цих операцій. Закони операцій додавання і множення.

Таблиця № 5.1. Взаємно однозначна відповідність між множинами Z і N.

-1 -2 -3 -n n
2n 2n+1

 

Із наведеної таблиці можна зробитися висновок, що Z~N, а тому множина цілих чисел зчисленна. Властивість доведено.

Властивість 5: множина цілих чисел замкнена відносно операцій додавання, віднімання і множення.

4. Приступаючи до побудови множини цілих чисел, ми зазначали, що операції над новими числами слід означити так, щоб, з одного боку, правила виконання операцій над старими числами збереглися, а з іншого - вони б не суперечили правилам виконання цих операцій у попередній числовій множині. Саме тому будемо при означенні операцій над цілими числами враховувати вказані зауваження. Отже, приймемо наступні означення.

Означення: сумою двох цілих чисел а і b, називається таке третє ціле число а+b, що виконуються наступні правила: 1) сума двох цілих чисел з однаковими знаками дорівнює сумі їх модулів, взята із спільним знаком; 2) сума двох цілих чисел з різними знаками дорівнює різниці модулів цих чисел, яка взята із знаком більшого модуля; 3) сума протилежних чисел дорівнює нулю; 4) додавання з нулем не змінює цілого числа.

У математиці доведено, що операція додавання у множині цілих чисел існує, єдина та підкоряється комутативному й асоціативному законам. Пропонуємо студентам сформулювати відповідні теореми.

Означення: різницею цілих чисел а і b називається таке ціле число с=а-b, що с+b=а.

Для того, щоб довести теорему про існування та єдиність різниці, слід довести таке допоміжне твердження: «для будь-яких цілих чисел а і b виконується рівність а-b=а+(-b)». Справді, оскільки для кожного цілого числа b існує протилежне йому ціле число –b і b+(-b)=0, то (а+(-b))+b=а. Звідси маємо а-b=а+(-b). Доведене твердження дає змогу операцію віднімання цілих чисел звести до операції додавання. Наприклад, 12-(-8)=12+8=20.



Интернет реклама УБС

Означення: добутком двох цілих чисел а і b, називається таке третє ціле число аb, що виконуються наступні правила: 1) добуток двох цілих чисел з однаковими знаками дорівнює добутку їх модулів, взятому із знаком плюс; 2) добуток двох цілих чисел з різними знаками дорівнює добутку їх модулів, взятому із знаком мінус; 3) добуток будь-якого цілого числа на нуль дорівнює нулю; 4) добуток будь-якого цілого числа на одиницю дорівнює цьому цілому числу.

Оскільки в означенні нічого не говориться про існування, єдиність та властивості операції множення, то в множині цілих чисел слід сформулювати та довести відповідні теореми. Пропонуємо студентам сформулювати ці теореми, виконавши завдання для самостійної роботи.

Означення: часткою цілих чисел а і b називається таке ціле число с=а:b, що сb=а.

Якщо а=0, то для будь-якого цілого числа b≠0 частка існує і 0:b=0. Якщо а=0 і b=0, то вираз 0:0 не має смислу. Якщо а≠0 і b=0, то ні для жодного цілого числа с не може виконуватися рівність с•0=а. Саме тому частка а:0 не існує. Таким чином, і в множині цілих чисел ділити на нуль неможливо. В математиці доведено справедливість наступної теореми «частка цілих чисел а і b, де b≠0, існує тоді і тільки тоді, коли а=сb, де сєZ». Отже, ми означили в множині цілих чисел всі чотири арифметичні операції так, щоб вони, по-перше, не суперечили правилам виконання цих дій над натуральними числами, по-друге, підкорялися тим же законам.

 


Читайте також:

  1. I. Органи і системи, що забезпечують функцію виділення
  2. III. За виділенням або поглинанням енергії
  3. IV. Закони ідеальних газів.
  4. IV. Політика держав, юридична регламентація операцій із золотом.
  5. POS -Інтелект - відеоконтроль касових операцій
  6. VII. Філо- та онтогенез органів виділення
  7. Автододавання та автообчислення.
  8. Автоматизація касових операцій
  9. Аграрні закони України
  10. АДАПТАЦІЯ ОПЕРАЦІЙНОЇ СИСТЕМИ ДО ЗМІНИ ЇЇ ЗАВАНТАЖЕННЯ.
  11. Аксіоми додавання і множення
  12. Аксіоми. Теореми. Ознаки.

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Властивості множини цілих чисел. | Необхідність розширення множини цілих чисел.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.001 сек.