Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Теорема Коші

Загрузка...

 

Теорема.Якщо функції і 1) неперервні на відрізку ,

2) диференційовані на інтервалі , і ,

то існує точка така, що .

Доведення. Побудуємо допоміжну функцію

 

.

 

Легко перевірити, що ця функція задовольняє всім умовам теореми Ролля: неперервна на , диференційована на і . Отже, за теоремою Ролля існує точка така, що . Оскільки

 

,

 

то

 

.

 

Звідси маємо

 

.

 

Одержана формула називається формулою Коші або узагальненою формулою скінчених приростів.

Зауваження. У формулі Коші тому, що за умови , згідно з теоремою Ролля існувала б точка така, що , що суперечить умові .

 

 

ЛЕКЦІЯ 19

 

51. Розкриття невизначеностей. Правило Лопіталя.

2.Застосування правила Лопіталя при розкритті невизначеностей вигляду .


Читайте також:

  1. В. Друга теорема про розклад.
  2. Друга теорема Вейєрштрасса
  3. Інтегральна теорема Лапласа
  4. Локальна теорема Лапласа
  5. Магнітний потік. Теорема Гауса для магнітного поля
  6. Момент інерції. Теорема Гюйгенса-Штейнера
  7. Напряженность поля. Теорема Гаусса
  8. Незалежні події. Теорема множення для незалежних подій
  9. Опукле програмування. Необхідні та достатні умови існування сідлової точки. Теорема Куна-Такера.
  10. Основна теорема арифметики цілих невід’ємних чисел.
  11. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
  12. Приведення сили до точки (теорема Пуансо)

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Наслідки з теореми Лагранжа. | Формула Тейлора для многочлена.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.005 сек.