Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Формула для знаходження диференціала

Загрузка...

справджується в усіх випадках: як тоді, коли u є незалежною змінною, так і тоді, коли u є функцією іншої незалежної змінної. В останньому випадку під множником du слід розуміти диференціал функції u.

 

Зауваження. Оскільки диференціал функції дорівнює добутку її похідної на диференціал незалежної змінної, то фор­мули для знаходження диференціалів будуть такі самі, як і для знаходження похідних, якщо кожну з них помножити на dx.

Приклад. Знайти диференціал функції .

·

·

Диференціали вищих порядків

Диференціал функції є також функцією незалежної змінної, а тому його можна диференціювати. Розглянемо функцію .

Означення. Другим диференціалом функції у = f(x) називається вираз d(dy).

Позначення:

Аналогічно дістаємо третій диференціал і т. д. до диференціала n-го порядку .

Диференціал незалежної змінної dx не залежить від х, тому, диференціюючи dx за х, слід розглядати dx як величину сталу відносно х. Отже, приходимо до простих співвідношень між послідовними диференціалами і послідовними похідними:

(1)

Приклад. Знайти третій диференціал функції

.

· Згідно з (1) дістаємо:

·

Зауваження. Формули (1) при будуть неправильними в загальному випадку, якщо змінна х є функцією від незалежного аргументу t. Виняток становитиме випадок, коли х є лінійною функцією незалежного аргументу t і .

Література : В.П.Дубовик, І.І.Юрик „Вища математика”, К.,”АСК”,2001

Гл.5, стор. 225 – 233

 

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Тема 13 | Тема 14

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.002 сек.