:
 













³





ij




̲
'



'




˳

























㳿


Գ
Գ
Գ
Գ
ճ






Определение механических свойств материала при растяжении

асчеты прочности и жесткости конструкций и их деталей невозможно осуществить, если неизвестны механические свойства реальных материалов и их числовые характеристики, которые могут быть определены только экспериментальным путем.

Важность экспериментальных исследований объясняется еще и тем, что все решения сопротивления материалов являются приближенными. Поэтому их достоверность и пределы применимости могут быть установлены лишь экспериментально. Механические свойства материалов при различных видах деформаций (растяжении, сжатии, кручении и т. д.) изучаются путем испытания на специальных машинах брусьев простейшей формы, называемых образцами. Испытания проводятся обычно при комнатной температуре. В последнее время большое внимание уделяется исследованию свойств материалов при повышенных температурах. Наибольшей простотой и надежностью результатов отличаются испытания на растяжение. Испытательные машины снабжены динамометрами для замеров нагрузки на образец, а деформации образцов измеряются специальными приборами - тензометрами, устанавливаемыми непосредственно на образцах.

Применяются круглые и плоские образцы. Их размеры и конфигурация стандартизованы. Характерной особенностью образцов является наличие на концах усиленных частей - головок под захват машины и плавного перехода к более тонкой рабочей части постоянного сечения (рисунок4.3). Такая форма образца позволяет обеспечить однородное напряженное состояние в его рабочей части.

В процессе испытания изучается зависимость между нагрузками и вызванными ими удлинениями. Эту зависимость принято представлять в виде диаграмм растяжения. Как правило, испытательные машины оборудованы специальными приспособлениями для автоматической записи таких диаграмм.

При построении диаграмм растяжения по оси абсцисс откладываются удлинения Δl рабочей части образца, а по оси ординат - соответствующие им значения растягивающей силы P

На исунок4.4 представлена диаграмма растяжения образца из малоуглеродистой стали. Эту диаграмму можно разделить на три характерных участка.

исунок 4.3. Образец для испытаний на растяжение

исунок 4.4. Первичная диграмма растяжения пластичного материала с площадкой текучести

исунок 4.5. Первичные диаграммы растяжения

На участке ОА, соответствующем стадии упругости образца, деформации материала подчиняются закону Гука.

На участке АВ рост нагрузки замедляется, а затем почти прекращается при одновременном росте удлинений. Явление значительного роста удлинений без заметного увеличения нагрузки называется текучестью, а горизонтальный (или почти горизонтальный) участок диаграммы растяжения называется площадкой текучести.

На стадии общей текучести полированная поверхность образца покрывается сеткой тонких линий (см. исунок 4.4), называемых линиями сдвига, или линиями Чернова, по фамилии русского металлурга, впервые заметившего их. Эти линии являются следами плоскостей скольжения (сдвига) частиц материала друг относительно друга. Они наклонены к оси бруса под углом, близким к 45°, и практически совпадают с плоскостями действия максимальных касательных напряжений.

Многие материалы, например легированные стали, дюралюминий, обнаруживают пластические свойства, но площадки текучести не имеют. Характер диаграмм растяжения для дюралюминия и легированной стали представлен на исунок 4.5.

На участке ВС, называемом зоной упрочнения, материал вновь приобретает свойство оказывать сопротивление нагрузке, но с ростом удлинения образца нагрузка возрастает значительно медленнее, чем на упругом участке. В зоне упрочнения равномерное до этого уменьшение поперечных размеров рабочей части образца нарушается появлением местного утоньшения — шейки (см. исунок 4.4). Деформация образца приобретает местный характер течения материала в области шейки, и в связи с быстрым уменьшением сечения образца в этом месте для развитии деформаций требуется меньшая нагрузка. Этим, главным образом, и объясняется падение нагрузки за точкой C на диаграмме растяжения. Точка D диаграммы соответствует разрушению образца.

Диаграммы условных и истинных напряжений

Диаграмма растяжения в осях Δl и P является по существу характеристикой образца из данного материала, так как при одном и том же значении силы P величина удлинения зависит от поперечных и продольных размеров образца. Чтобы исключить влияние размеров образца и получить характеристику материала, диаграмму растяжения строят в координатах σ - ε.

При переходе от нагрузок P к напряжениям σ и от абсолютных удлинений Δl к относительным ε обычно пренебрегают изменением площади сечения образца в процессе растяжения, а также неравномерностью распределения деформаций по длине его рабочей части после образования шейки. Подсчитывают σ делением нагрузки P на первоначальную площадь Fo сечения образца, а ε - делением удлинения всей его рабочей части на ее первоначальную длину lo. Полученная таким путем диаграмма называется диаграммой условных напряжений, по характеру она не отличается от диаграммы в осях P - Δl.

Диаграмма условных напряжений для малоуглеродистой стали показана на исунок 4.6. Уравнение линейного участка этой диаграммы на начальной стадии нагружения σ = Eε представляет собой уже известную математическую запись закона Гука при одноосном растяжении. Следовательно, численно модуль упругости равен тангенсу угла α наклона к оси абсцисс прямолинейного участка диаграммы растяжения.

Диаграмма растяжения, по оси ординат которой откладывается напряжение, полученное делением силы на наименьшую площадь сечения образца, а по оси абсцисс - наибольшее удлинение в данный момент нагружения, называется диаграммой истинных напряжений. Эта диаграмма показана на исунок4.6 пунктиром. Здесь падения напряжений за точкой C не наблюдается, так как площадь сечения в шейке уменьшается быстрее, чем падает нагрузка, поэтому средние напряжения в этом месте возрастают. Вследствие образования шейки распределение напряжений по сечению становится неравномерным, а частицы материала в этом месте испытывают растяжение не только в продольном, но также в радиальном и окружном направлениях. Это приводит к образованию внутри шейки поперечной трещины. азличие диаграмм условных и истинных напряжений становится значительным только после образования шейки.

исунок 4.6 Диаграмма условных напряжений


:

  1. Анализ напряженного состояния при сдвиге
  2. Напряженное состояние при кручении
  3. Механические свойства при сжатии
  4. асчеты на прочность и жесткость при кручении
  5. асчеты на прочность при поперечном изгибе
  6. Определение главных напряжений и главных площадок
  7. Статически неопределимые задачи при кручении
  8. Потенциальная энергия деформации при кручении
  9. Потенциальная энергия деформации при растяжении
  10. Потенциальная энергия деформации при чистом сдвиге
  11. Внутренние силовые факторы при кручении




: 1000

<== | ==>
 | Механические характеристики материалов

? google:

 

© studopedia.com.ua '.


: 0.004 .