:
 













³





ij




̲
'



'




˳

























㳿


Գ
Գ
Գ
Գ
ճ






Закон разгрузки и повторного нагружения

Если образец нагрузить до напряжений, больших σу, но меньших σв, например до точки K диаграммы (исунок 4.6), а затем начать разгружать, то разгрузка будет происходить по прямой KL, параллельной начальному линейному участку диаграммы. После разгрузки деформация образца уменьшится, но полностью не исчезнет. Отрезок LM определяет величину исчезающей, т. е. упругой деформации εу, а отрезок OL - величину остаточной (пластической) деформации εпл. Прямолинейность линии разгрузки показывает, что упругая деформация подчиняется закону Гука и за пределами пропорциональности.

Повторное нагружение образца уже не повторяет полностью прежнюю диаграмму, а происходит сначала по прямой разгрузки KL, и затем по кривой КС, которую имел бы этот образец без промежуточной разгрузки. Следовательно, после промежуточной разгрузки появился как бы новый материал с более высоким пределом пропорциональности, но меньшей пластичностью.

Явление повышения упругих свойств материала в результате предварительного пластического деформирования называется наклепом или нагартовкой. Наклеп возникает при вытяжке, холодной прокатке металла, в процессе штамповки и т. д. Часто наклеп играет положительную роль и применяется для упрочнения поверхностного слоя детали, повышения упругости свойств проволоки, канатов и т. п. В тех случаях, когда наклеп вреден, его устраняют отжигом.

исунок 4.7. Закон упругой разгрузки

Пластичные и хрупкие материалы

По результатам испытаний на одноосное растяжение материалы принято делить на пластичные и хрупкие. К пластичным относятся материалы, разрушению которых предшествуют большие остаточные деформации, достигающие иногда 20...25%. Хрупкими называют материалы, разрушающиеся при малых остаточных деформациях, не превышающих 2...5%. Характерными представителями пластичных материалов являются малоуглеродистая сталь и алюминий, а хрупких - чугун, инструментальная сталь и стекло. Пластичные и хрупкие материалы отличаются еще и характером разрушения при растяжении. Пластичные материалы проявляют большее сопротивление отрыву частиц, чем сдвигу их друг относительно друга, (и разрушаются главным образом, от сдвига частиц в плоскостях действия наибольших касательных напряжений. Именно вследствие сдвига частиц увеличивается длина образца из пластичного материала при его растяжении, а место разрушения в шейке имеет вид кратера, стенки которого наклонены к оси образца под углом 45° (исунок 4.8). Дном этого кратера является поверхность первоначальной внутренней трещины, возникающей после образования шейки.

Хрупкие материалы, наоборот, обладают большим сопротивлением сдвигу, чем отрыву, и разрушаются при растяжении внезапно от отрыва частиц материала по плоскости поперечного сечения (исунок 4.9). Явления текучести, упрочнения и образования шейки на образцах из таких материалов перед разрывом не наблюдаются. Единственной прочностной характеристикой хрупких материалов является предел прочности σв. Диаграмма растяжения хрупких материалов представлена на исунок 4.10.

исунок 4.8 исунок 4.9 исунок 4.10

Деление материалов на хрупкие и пластичные является условным, так как свойства материалов зависят от температуры, скорости и вида нагружения. Один и тот же материал в одних условиях ведет себя как хрупкий, в других - как пластичный. Например, мрамор при одноосном растяжении разрушается как хрупкий материал, а при всестороннем сжатии проявляет пластические свойства. Поэтому правильнее говорить о пластичном и хрупком характере разрушения материала. Первое происходит при больших, а второе при сравнительно малых остаточных деформациях.




: 2700

<== | ==>
Механические характеристики материалов | Механические свойства при сжатии

? google:

 

© studopedia.com.ua '.


: 0.005 .