Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Теорема Чебишева

Інтеграл від диференціального бінома виражається через інтеграл від раціональної функції відносно нової змінної, якщо:

1) - ціле число (додатне, від’ємне чи 0) і виконано підстановку , де - найменший спільний знаменник дробів і ;

2) - ціле число (додатне, від’ємне чи 0) і виконано підстановку , де - знаменник дробу ;

3) - ціле число (додатне, від’ємне чи 0) і виконано підстановку , де - знаменник дробу .

В інших випадках інтеграл від диференціального біному через елементарні функції не виражається.

 

  1. Інтеграл виду раціоналізується підстановкою , яка називається універсальною.

a) , підстановка ;

b) , підстановка ;

c) , підстановка ;

d) , підстановка:

1) , якщо функція непарна відносно , ,

2) , якщо функція непарна відносно , ,

3) , якщо функція парна відносно і одночасно, ;

e) , підстановка:

1) , якщо - ціле додатне непарне число;

2) , якщо - ціле додатне непарне число;

3) за допомогою формули пониження степеня , якщо і - цілі додатні парні числа;

4) , якщо і - цілі парні числа, але одне з них від’ємне або цілі парні і від’ємні.

f) обчислюються за допомогою формул

 

  1. Інтеграл виду обчислюється за допомогою підстановки або підстановки Ейлера:

1) якщо , то ;

2) якщо , то ;

3) якщо , то , де - корінь тричлена .

  1. Інтеграл раціоналізується підстановкою .

 

6. Інтеграли, що „не беруться”

 

1) - інтеграл Пуассона;

2) - інтеграли Френеля;

3) - інтегральний логарифм;

4) - інтегральний косинус;

5) - інтегральний синус;

6) - еліптичний інтеграл;

7) та ряд інших інтегралів.


Читайте також:

  1. В. Друга теорема про розклад.
  2. Друга теорема Вейєрштрасса
  3. Інтегральна теорема Лапласа
  4. Локальна теорема Лапласа
  5. Магнітний потік. Теорема Гауса для магнітного поля
  6. Момент інерції. Теорема Гюйгенса-Штейнера
  7. Напряженность поля. Теорема Гаусса
  8. Незалежні події. Теорема множення для незалежних подій
  9. Опукле програмування. Необхідні та достатні умови існування сідлової точки. Теорема Куна-Такера.
  10. Основна теорема арифметики цілих невід’ємних чисел.
  11. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
  12. Приведення сили до точки (теорема Пуансо)

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Метод інтегрування частинами | ЛЕКЦІЯ 15. Гегельянство та неогегельянство

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.002 сек.