Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






GLOSSARY

The cell - (from Latin cella, meaning "small room") is the basic structural, functional, and biological unit of all known living organisms. Cells are the smallest unit of life that can replicate independently, and are often called the "building blocks of life". The study of cells is called cell biology.

A somatic (Greek: σὠμα/soma = body) or vegetative cell is any biological cell forming the body of an organism; that is, in a multicellular organism, any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell.

The cytoplasm comprises cytosol (the gel-like substance enclosed within the cell membrane) – and the organelles – the cell's internal sub-structures. All of the contents of the cells of prokaryote organisms (such as bacteria, which lack a cell nucleus) are contained within the cytoplasm. Within the cells of eukaryote organisms the contents of the cell nucleus are separated from the cytoplasm, and are then called the nucleoplasm.

The cell membrane (also known as the plasma membrane or cytoplasmic membrane) is a biological membrane that separates the interior of all cells from the outside environment.

The glycocalyx is a glycoprotein-polysaccharide covering that surrounds the cell membranes of some bacteria, epithelia and other cells.

Microvilli (singular: microvillus) are microscopic cellular membrane protrusions that increase the surface area of cells and minimize any increase in volume, and are involved in a wide variety of functions, including absorption, secretion, cellular adhesion, and mechanotransduction.

Plant cell walls -The walls of plant cells must have sufficient tensile strength to withstand internal osmotic pressures of several times atmospheric pressure that result from the difference in solute concentration between the cell interior and external water. Plant cell walls vary from 0.1 to several µm in thickness.

The endoplasmic reticulum (ER) is a type of organelle in the cells of eukaryotic organisms that forms an interconnected network of flattened, membrane-enclosed sacs or tubes known as cisternae. The membranes of the ER are continuous with the outer membrane of the nuclear envelope.

The Golgi apparatus, also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. It was identified in 1897 by the Italian physician Camillo Golgi and named after him in 1898. Part of the cellular endomembrane system, the Golgi apparatus packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination. The Golgi apparatus resides at the intersection of the secretory, lysosomal, and endocytic pathways. It is of particular importance in processing proteins for secretion, containing a set of glycosylation enzymes that attach various sugar monomers to proteins as the proteins move through the apparatus.

The mitochondrion (plural mitochondria) is a membrane-bound organelle found in most eukaryotic cells. The word mitochondrion comes from the Greek μίτος, mitos, i.e. "thread", and χονδρίον, chondrion, i.e. "granule" or "grain-like". Mitochondria range from 0.5 to 1.0 micrometer (μm) in diameter. These structures are sometimes described as "the powerhouse of the cell" because they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in other tasks such as signaling, cellular differentiation, cell death, as well as maintaining the control of the cell cycle and cell growth.

The plastid (Greek: πλαστός; plastós: formed, molded – plural plastids) is a major double-membrane organelle found, among others, in the cells of plants and algae. Plastids are the site of manufacture and storage of important chemical compounds used by the cell. They often contain pigments used in photosynthesis, and the types of pigments present can change or determine the cell's color.

Chloroplasts are organelles, specialized subunits, in plant and algal cells. Their main role is to conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight, and stores it in the energy storage molecules ATP and NADPH while freeing oxygen from water. They then use the ATP and NADPH to make organic molecules from carbon dioxide in a process known as the Calvin cycle.

A lysosome (derived from the Greek words lysis, meaning "to loosen", and soma, "body") is a membrane-bound cell organelle found in most animal cells (they are absent in red blood cells). Structurally and chemically, they are spherical vesicles containing hydrolytic enzymes capable of breaking down virtually all kinds of biomolecules, including proteins, nucleic acids, carbohydrates, lipids, and cellular debris.

The ribosome is a large and complex molecular machine, found within all living cells, that serves as the site of biological protein synthesis (translation). Ribosomes link amino acids together in the order specified by messenger RNA (mRNA) molecules. Ribosomes consist of two major components — the small ribosomal subunit which reads the RNA, and the large subunit which joins amino acids to form a polypeptide chain.

A vacuole is a membrane-bound organelle which is present in all plant and fungal cells and some protist, animal and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including enzymes in solution, though in certain cases they may contain solids which have been engulfed. Vacuoles are formed by the fusion of multiple membrane vesicles and are effectively just larger forms of these.

A microbodyis a type of organelle that is found in the cells of plants, protozoa, and animals. Organelles in the microbody family include peroxisomes, glyoxysomes, glycosomes and hydrogenosomes. In vertebrates, microbodies are especially prevalent in the liver and kidney organs.

Peroxisome — Peroxisomes are ubiquitous organelles in eukaryotes that participate in the metabolism of fatty acids and other metabolites. Peroxisomes have enzymes that rid the cell of toxic peroxides.

Microfilaments ( or actin filaments) are the thinnest filaments of the cytoskeleton, a structure found in the cytoplasm of all eukaryotic cells. These linear polymers of actin subunits are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. Microfilaments are highly versatile, functioning in cell crawling, amoeboid movement, and changes in cell shape. In inducing this cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors.[1] Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and uropod advancement.

Cilia and flagella are cell organelles that are structurally similar but are differentiated based on their function and/or length. Cilia are short and there are usually many (hundreds) cilia per cell. On the other hand, flagella are longer and there are fewer flagella per cell (usually one to eight). Though eukaryotic flagella and motile cilia are structurally identical, the beating pattern of the two organelles can be different. The motion of flagella is often undulating and wave-like, whereas the motile cilia often perform a more complicated 3D motion with a power and recovery stroke.

A basal body (sometimes basal granule or kinetosome) is an organelle formed from a centriole, a short cylindrical array of microtubules. It is found at the base of a eukaryotic undulipodium (cilium or flagellum) and serves as a nucleation site for the growth of the axoneme microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor microtubules within centrosomes, one type of microtubule organizing center (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells. Basal bodies, however, are specifically the bases for cilia and flagella that extend out of the cell.

Centriole - In cell biology a centriole is a cylindrical cell structure composed mainly of a protein called tubulin that is found in most eukaryotic cells. An associated pair of centrioles, surrounded by a shapeless mass of dense material, called the pericentriolar material, or PCM, makes up a compound structure called a centrosome.

The cell cycle, or cell-division cycle, is the series of events that take place in a cell leading to its division and duplication (replication) that produces two daughter cells. In cells without a nucleus (prokaryotic), the cell cycle occurs via a process termed binary fission. In cells with a nucleus (eukaryotes), the cell cycle can be divided into three periods: interphase, the mitotic (M) phase, and cytokinesis.

Nucleus - In cytology, typically a rounded or oval mass of protoplasm within the cytoplasm of a plant or animal cell; it is surrounded by a nuclear envelope, which encloses euchromatin, heterochromatin, and one or more nucleoli and undergoes mitosis during cell division. SYN: karyon.

A nuclear envelope (NE) (also known as the perinuclear envelope, nuclear membrane, nucleolemma or karyotheca) is a double lipid bilayer that encloses the genetic material in eukaryotic cells. The nuclear envelope also serves as the physical barrier, separating the contents of the nucleus (DNA in particular) from the cytosol (cytoplasm). Many nuclear pores are inserted in the nuclear envelope, which facilitate and regulate the exchange of materials (proteins such as transcription factors, and RNA) between the nucleus and the cytoplasm.

Euchromatin is a lightly packed form of chromatin (DNA, RNA and protein) that is rich in gene concentration, and is often (but not always) under active transcription. Euchromatin comprises the most active portion of the genome within the cell nucleus. 92% of the human genome is euchromatic.[1] The remainder is called heterochromatin.

A chromosome is a packaged and organized structure containing most of the DNA of a living organism. It is not usually found on its own, but rather is complexed with many structural proteins called histones as well as associated transcription factors (during transcription - copying of genetic sequences) and several other macromolecules. Two "sister" chromatids (half a chromosome) join together at a protein junction called a centromere.

A couple of homologous chromosomes are a set of one maternal chromosome and one paternal chromosome that pair up with each other inside a cell during meiosis. These copies have the same genes in the same locations, or loci. These loci provide points along each chromosome which enable a pair of chromosomes to align correctly with each other before separating during meiosis.

A chromatid (Greek khrōmat- 'color' + -id) is one copy of a duplicated chromosome, which is generally joined to the other copy by a single centromere. Before replication, one chromosome is composed of one DNA molecule.

A chromomere, also known as an idiomere, is one of the serially aligned beads or granules of a eukaryotic chromosome, resulting from local coiling of a continuous DNA thread. It is visible on a chromosome during the prophase of meiosis and mitosis.

The centromere is the part of a chromosome that links sister chromatids. During mitosis, spindle fibers attach to the centromere via the kinetochore.[1] Centromeres were first defined as genetic loci that direct the behavior of chromosomes.

Chromosomal crossover (or crossing over) is an exchange of genetic material between homologous chromosomes. It is one of final phases of genetic recombination, which occurs during prophase 1 of meiosis (diplotene) in a process called synapsis. Synapsis begins before the synaptonemal complex develops, and is not completed until near the end of prophase 1. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

The kinetochore is the protein structure on chromatids where the spindle fibers attach during cell division to pull sister chromatids apart.

The kinetochore forms in eukaryotes, assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis.

Secondary constriction is seen at the chromosome in addition to primary constriction/centromere. Chromosome can bend only at the site of primary constriction during Anaphase. Secondary constrictions are useful in identifying a chromosome from a set. There are either 0, 1, 2, 3, or 4 secondary constriction sites in a cell at anaphase. Some parts of these constrictions indicates sites of nucleolus formation and so they are called "Nucleolar Organizing Region."

A telomere is a region of repetitive nucleotide sequences at each end of a chromatid, which protects the end of the chromosome from deterioration or from fusion with neighbouring chromosomes. Its name is derived from the Greek nouns telos (τέλος) 'end' and merοs (μέρος, root: μερ-) 'part.' For vertebrates, the sequence of nucleotides in telomeres is TTAGGG.

In cell biology, spindle apparatus refers to the subcellular structure of eukaryotic cells that segregates chromosomes between daughter cells during cell division. It is also referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with ½ the number of chromosomes of the parent cell.

A karyotype (from Greek κάρυον karyon, "kernel, seed or nucleus", and τύπος typos, "general form") is the number and appearance of chromosomes in the nucleus of a eukaryotic cell. The term is also used for the complete set of chromosomes in a species, or an individual organism. Karyotypes describe the number of chromosomes, and what they look like under a light microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics. The preparation and study of karyotypes is part of cytogenetics.

Meiosis is a specialized type of cell division which reduces the chromosome number by half. This process occurs in all sexually reproducing eukaryotes (both single-celled and multicellular) including animals, plants, and fungi.

Reduction of chromosomes - the process during meiosis whereby one member of each homologous pair of chromosomes is distributed to a sperm or ovum; the diploid set of chromosomes (46 in humans) is thus reduced to the haploid set in each gamete; union of the sperm and ovum then restores the diploid or somatic number in the one-cell zygote.

 




Переглядів: 184

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.009 сек.