Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Лінійна функція, її властивості та графік.

Загрузка...

Пряма пропорційність, її властивості та графік.

2. З курсу математики відомо, що дві величини називаються прямо пропорційними, якщо із збільшенням (зменшенням) однієї з них у кілька разів у стільки ж разів збільшується (зменшується) інша величина. Таке співвідношення між цими величинами задається за допомогою формули k=у/х або у=kх. Отже, приймемо наступне означення.

Означення: функцією прямої пропорційності називається функція виду у=kх, де k≠0 і kєR.

Одним із основних завдань щодо функцій є встановлення їх властивостей або дослідження функцій. Як правило, дослідження функцій проводять за певним планом, а саме: 1) встановлення області визначення функції; 2) виявлення проміжків монотонності (зростання і спадання) функції; 3) визначення парності чи непарності функції; 4) визначення особливих точок функції (точок розриву, екстремуму тощо) та характеру поведінки функції біля цих точок; 5) побудова графіка функції; 6) визначення множини значень функції.

Розглянемо властивості функції у=kх. Оскільки для знаходження значення у за відомим значенням х необхідно виконати дію множення, яка в множині дійсних чисел завжди існує, то областю визначення цієї функції буде множина дійсних чисел. Отже, D(kx)=R.

Для визначення проміжків монотонності функції виберемо два довільних значення аргументу х1 і х2 таких, що х12. Якщо k>0, то kх1>kх2, тобто f(х1)>f(х2). Це означає, що при k>0 функція прямої пропорційності зростає на всій області визначення. Якщо k<0, то із нерівності х12 випливає kх1<kх2, тобто f(х1)<f(х2). Це означає, що при k<0 функція прямої пропорційності спадає на всій області визначення.

Для того, щоб визначити парною чи непарною є ця функція, відповідно до означення непарних функцій маємо: f(-х)=k(-x)= -kx= -f(х), тобто справедлива рівність f(-х)= -f(х). Це означає, що функція у=kх є непарною, а її графік повинен бути симетричним відносно початку координат. Розглядаючи рівняння прямих, ми встановили, що графіком функції у=kх є пряма лінія, яка проходить через початок координат і розміщена у першій та третій координатних кутах, якщо k>0, і в другій та четвертій чверті, якщо k<0. Особливих точок функція немає. Оскільки для кожного значення аргументу хєR, можна знайти відповідне йому значення функції уєR, то множиною значень функції у=kх є множина всіх дійсних чисел, тобто Е(kx)=R.



Интернет реклама УБС

 

3. Більш загальною залежністю, ніж пряма пропорційність величин, є лінійна залежність величин, яка виражається формулою у=kх+b або y=ax+b, перейдемо до визначення та виявлення властивостей цієї функції.

Означення: функція виду у=kх+b (або y=ax+b), де а, b, k – дійсні числа, причому k≠0 (або a≠0) називається лінійною функцією.

Оскільки для знаходження значень функції за відомим значенням аргументу для у=kх+b необхідно виконувати дії множення та додавання, які в множині дійсних чисел завжди існують, то областю визначення цієї функції буде множина дійсних чисел. Отже, D(kх+b)=R.

Для визначення проміжків монотонності функції виберемо два довільних значення аргументу х1 і х2 таких, що х12. Якщо k>0, то kх1>kх2, тоді для довільного bєR маємо: kх1+b>kх2+b, тобто f(х1)>f(х2). Це означає, що при k>0 лінійна функція зростає на всій області визначення. Якщо k<0, то із нерівності х12 випливає kх1<kх2, тоді для довільного bєR маємо: kх1+b<kх2+b, тобто f(х1)<f(х2). Це означає, що при k<0 лінійна функція спадає на всій області визначення.

Для того, щоб визначити парною чи непарною є ця функція, відповідно до означення непарних функцій, маємо: f(-х)=k(-x)+b= -kx+b= -(kx-b)≠ -f(х). Таким чином, не справджується жодна з рівностей f(-х)= -f(х) чи f(-х)=f(х). Це означає, що лінійна функція не відноситься ні до парних, ні до непарних. Розглядаючи рівняння прямих, ми встановили, що графіком функції у=kх+b є пряма лінія. Особливих точок функція немає. Оскільки для кожного значення аргументу хєR, можна знайти відповідне йому значення функції уєR, то множиною значень функції у=kх+b є множина всіх дійсних чисел, тобто Е(kx+b)=R.


Читайте також:

  1. Аеродинамічні властивості колісної машини
  2. Аналізатори людини та їхні властивості.
  3. Аналізатори людини та їхні властивості.
  4. Атрибутивні ознаки і властивості культури
  5. Багатомірна лінійна модель регресії.
  6. Білки, властивості, роль в життєдіяльності організмів.
  7. Біосфера Землі, її характерні властивості
  8. Будова атомів та хімічний зв’язок між атомами визначають будову сполук, а отже і їх фізичні та хімічні властивості.
  9. Будова і властивості аналізаторів
  10. Векторний добуток і його властивості.
  11. Види і властивості радіоактивних випромінювань
  12. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Поняття числової функції, способи їх задання, графік та властивості. | Квадратична функція, її властивості та графік.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.002 сек.