Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Декартів добуток двох множин. Зображення декартового добутку двох числових множин на координатній площині

Загрузка...

Означення: Декартовим добуткоммножин А і В називається множина, елементами якої є всі упорядковані пари (а, b) такі, що а є А, b є В.

Позначається декартів добуток А×В (але не А∙В або АВ).

Нехай А ={a1, a2, a3} i B = {b1, b2}. Знайдемо А×В і В×А.

А×В = {(a1, b1), (a1, b2), (a2, b1), (a2, b2),(a3, b1), (a3, b2)},

B×A = {(b1, a1), (b1, a2), (b1, a3), (b2, a1), (b2, a2), (b2, a3)}.

Із означення видно, що декартів добуток не має переставної властивості: А×В ≠ В×А

Переставна властивість декартового добутку двох різних множин має місце лише тоді, коли одна з них порожня: А×Ø = Ø×А = Ø

Декартів добуток двох рівних множин називають декартовим квадратом: А×А = А2, трьох множин – декартовим кубом і т. д.

Якщо множини А і В мають елементами числа, то декартів добуток зручно показувати в декартовій прямокутній системі координат. Відомо, що пара чисел (a, b) на координатній площині визначає точку М, абсциса якої a, а ордината b.

Зобразимо добуток А×В, якщо А = {2, 4, 5}, B = {1, 3}. Це будуть точки з координатами (2, 1), (2, 3), (4, 1), (4, 3), (5, 1), (5, 3).

у

 

 

3- • • •

 

1- • • •

х

0 2 4 5

 

Нехай А є множина дійсних чисел відрізка [3, 5], a множина В – множина дійсних чисел. Тоді декартів добуток А×В геометрично зобразиться смугою, обмеженою прямими, паралельними осі Оу: х = 3 і х = 5, а добуток В×А – смугою, обмеженою прямими, паралельними осі Ох: у = 3 і у = 5.

       
 
   
 


у у

 

у = 5

 

у = 3

 

 

0 х 0 х

3 5

Проілюструвати декартів добуток можна також таблицею. Розглянемо це на конкретному прикладі.

А = {К, З, Л} – множина міст: Київ, Запоріжжя, Львів. З кожного міста щодня відправляється по одному поїзду в Москву та Харків. Щоб дізнатися, скільки поїздів відправляється щодня у Москву та Харків зручно скласти таблицю. Позначимо множину міст Москва та Харків через В = {М, Х}



Интернет реклама УБС

 

В А   М   Х
  К   КМ   КХ
  З   ЗМ   ЗХ
  Л   ЛМ   ЛХ

Поняття декартового добутку можна поширити і на випадок трьох, чотирьох і взагалі n множин.

Означення: Декартовим добутком множин А1, А2 , ..., Аn називається множина А1× А2× ...×Аn, елементами якої є всі упорядковані n-ки такі, що перша компонента кожної з них належить А1, друга – А2, третя – А3 і т.д.

На розглянутих раніше прикладах неважко було помітити, що кількість елементів декартового добутку множин, взятих у довільному порядку, дорівнює добутку чисел, що виражають кількість елементів даних множин.

Властивості декартового добутку:

1. (АUВ) × С = (А × С) U (В × С);

2. А × ( BUC) = (A × B) U (A × C);

3. (A∩B) × C = ( A × C) ∩ (B × C);

4. A × (B ∩ C) = ( A × B) ∩ (A × C);

5. (A \ B) × C = (A × C) \ (B × C);

6. A × (B \ C) = (A × B) \ (A × C).

 


Читайте також:

  1. III. ЗОБРАЖЕННЯ (ГОСТ 2.305-68. Изображения – виды, разрезы, сечения)
  2. Алгебра множин
  3. Алгоритм розміщення зображення на слайді
  4. А–в горизонтальній площині; б – у вертикальній площині
  5. Бюджетні множини й лінії бюджетного обмеження
  6. В) добуток синусів і косинусів.
  7. Векторний добуток векторів
  8. Векторний добуток векторів.
  9. Векторний добуток і його властивості.
  10. Види відображень множин
  11. Виділення областей зображення в Adobe Photoshop.
  12. Виділення областей зображення в Adobe Photoshop.

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Переріз і об’єднання множин. Закони цих операцій. Доповнення підмножини | Поняття розбиття множини на підмножини, що попарно не перетинаються. Класифікація понять. Приклади класифікацій

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.