Студопедия
Контакти
 


Тлумачний словник

Реклама: Настойка восковой моли




Авто | Автоматизація | Архітектура | Астрономія | Аудит | Біологія | Будівництво | Бухгалтерія | Винахідництво | Виробництво | Військова справа | Генетика | Географія | Геологія | Господарство | Держава | Дім | Екологія | Економетрика | Економіка | Електроніка | Журналістика та ЗМІ | Зв'язок | Іноземні мови | Інформатика | Історія | Комп'ютери | Креслення | Кулінарія | Культура | Лексикологія | Література | Логіка | Маркетинг | Математика | Машинобудування | Медицина | Менеджмент | Метали і Зварювання | Механіка | Мистецтво | Музика | Населення | Освіта | Охорона безпеки життя | Охорона Праці | Педагогіка | Політика | Право | Програмування | Промисловість | Психологія | Радіо | Регилия | Соціологія | Спорт | Стандартизація | Технології | Торгівля | Туризм | Фізика | Фізіологія | Філософія | Фінанси | Хімія | Юриспунденкция

Правила віднімання

Загрузка...

Правило віднімання числа від суми: «Щоб відняти число від суми, достатньо відняти його від одного з доданків та до отриманого результату додати інший доданок».

Дане правило сформулюємо символічно.

Якщо а, b, с – цілі невід’ємні числа, то:

1) при ас маємо, що (а + b) – с = (ас) + b;

2) при bс маємо, що (а + b) – с = а + (bс);

3) при ас та bс можемо використати будь-яку з даних рівностей.

Доведення (для випадку 1).

Нехай ас, тоді різниця ас існує. Позначимо її буквою р, тобто ас = р. Звідси а = р + с. Підставимо суму р + с замість а у вираз (а + b) – с та виконаємо перетворення: (а + b) – с = (р + с + b) – с = р + b. Але так як р = ас, то (а + b) – с = = (ас) + b, що й треба було довести.

Доведення для випадків 2 і 3 аналогічне.

Покажемо графічне зображення доведення даного правила за допомогою кругів Ейлера. Розглянемо три скінчені множини A, B та C такі, що n (A) =а, n (В) = b, n (С) = с, A B = та C A. Тоді (а + b ) – с – це кількість елементів множини (А В)\С, а число (ас) + b – це кількість елементів множини (А\С) В. На кругах Ейлера множина (А В)\С зображена заштрихованою областю. Але множина (А\С) В зображується такою ж самою областю. Тому (А В)\С = (А\С) В для даних множин А, В і С. Отже, n ((А В)\С) = n ((А\С) В) та (а + b) – с = (ас) + b.


Аналогічно можна показати графічне зображення для випадків 2 і 3.

 

Правило віднімання суми від числа: «Щоб від даного числа відняти суму, достатньо відняти від нього послідовно кожен доданок», тобто якщо а, b, с – цілі невід’ємні числа, то при аb + с маємо

а – (b + с) = (аb) – с = (ас) – в.

Доведення даного правила та його теоретико-множинне тлумачення за допомогою кругів Ейлера є аналогічними.

Дані правила в початковій школі розглядаються на конкретних прикладах при визначенні раціонального способу обчислення. Правило віднімання суми від числа є основою прийому віднімання по частинам:

12 – 5 = 12 – (2 + 3) = (12 – 2) – 3 = 10 – 3 = 7.



Интернет реклама УБС

Також ці правила застосовуються при розв’язуванні задач різними способами. Наприклад задачу «На столі лежали 15 маленьких та 7 великих трикутників. Для аплікації використали 5 трикутників. Скільки трикутників залишилось?» можна розв’язати трьома способами:

1 спосіб: 1) 15 + 7 = 22 (тр.)

2) 22 – 5 = 17 (тр.)

2 спосіб: 1) 15 – 5 = 10 (тр.)

2) 10 + 7 = 17 (тр.)

3 спосіб: 1) 7 – 5 = 2 (тр.)

2) 15 + 2 = 17 (тр.).

 


Читайте також:

  1. II. Правила щодо аргументів.
  2. V. Етичні правила психологічних досліджень
  3. VII. Правила техніки безпеки і гігієни праці.
  4. А ви слідуєте цім правилам, коли виступаєте публічно?
  5. Види графіків та правила їх побудови.
  6. Види графіків та правила їх побудови.
  7. Визначення поняття та правила визначення
  8. Визначення, класифікація і правила побудови індексів
  9. Вимоги до керівника, правила та принцинципи управління
  10. Віднімання круглих трицифрових чисел з переходом через розряд виду 420 – 70. Вправи і задачі на застосування вивчених випадків арифметичних дій
  11. Віднімання переліків
  12. ВІДНІМАННЯ ПОНЯТЬ

Загрузка...



<== попередня сторінка | наступна сторінка ==>
Умови існування різниці, її єдиність | Відношення «більше на», «менше на»

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.