МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
ТМО навчання учнів розв'язувати задачі з типовим конкретним змістом та сюжетом.8. Які ж види складених задач відносяться до задач з типовим конкретним змістом і сюжетом? – аналіз системи вправ підручників з математики для початкових класів, методичних посібників для вчителів, навчальної програми з математики та вимог Державного освітнього стандарту з математики дозволяє віднести до таких задач наступні групи: 1) задачі, які пов’язані з рухом, серед яких виділяють: а) задачі, в яких за відомою швидкістю і часом потрібно знайти відстань, наприклад: “Колісний трактор їхав 7 год зі швидкістю 24 км/год. Яку відстань проїхав колісний трактор?”; б) задачі, в яких за відомою відстанню і швидкістю потрібно знайти час, наприклад: “Пасажир проїхав автобусом 180 км. Швидкість автобуса 60 км/год. Скільки часу їхав пасажир автобусом?”; в) задачі, в яких за відомою відстанню і часом потрібно знайти швидкість, наприклад: “За 2 год автобус проїхав 120 км, рухаючись з однаковою швидкістю. Яка швидкість руху автобуса?”; г) задачі на зустрічний рух і рух в протилежних напрямах (в разі віддалення рухомих тіл) має три види: 1) задано швидкість кожного з двох тіл і час руху, а потрібно знайти відстань, наприклад: “З Рівного до Києва виїхав автобус і одночасно назустріч йому з Києва виїхав другий автобус. Перший автобус їхав зі швидкістю 60 км/год, другий – 62 км/год. Через 3 год вони зустрілися. Яка відстань між містами?” або “З одного автовокзалу вирушили в протилежних напрямах два автобуси. Швидкість першого 65 км/год, а другого – 75 км/год. Яка відстань буде між автобусами через 6 год?” (Яку назву має кожний з цих видів задач?); 2) задано час руху обох тіл, відстань, яку вони подолали, швидкість одного з тіл, а потрібно знайти швидкість другого тіла, наприклад: “Дві велосипедні команди виїхали одночасно з двох селищ назустріч одна одній і зустрілися через 3 год. Відстань між селищами 150 км. Перша команда їхала зі швидкістю 28 км/год. З якою швидкістю рухалася друга команда?”; 3) задано швидкість кожного з тіл і відстань, яку вони проїхали, а слід визначити час руху, наприклад: “Із двох міст, відстань між якими 60 км, одночасно назустріч один одному виїхали два велосипедиста. Один їхав зі швидкістю 12 км/год, а інший - із швидкістю 18 км/год. Через який час вони зустрінуться?”; д) задачі на рух навздогін, наприклад: “Із двох міст, відстань між якими 120 км, одночасно в одному напрямку виїхали вантажний автомобіль і мотоцикліст. Швидкість вантажного автомобіля 60 км/год, а мотоцикліста – 80 км/год. Через який час мотоцикліст наздожене велосипедиста?”; 2) задачі на час, серед яких виділяють: а) задачі на знаходження тривалості події, коли відомо час її початку та закінчення, наприклад: “Магазин розпочинає свою роботу о 8 год, а завершує - о 23 год. Обідня перерва триває 2 год. Яка тривалість роботи магазину?”; б) задачі на знаходження часу початку події, коли відомо час її закінчення та тривалість, наприклад: “О котрій годині розпочинає магазин свою роботу, якщо відомо, що тривалість робочого дня 13 год, а зачиняється магазин о 23 год?”; в) задачі на знаходження часу закінчення події, коли відомо тривалість події та час її початку, наприклад: “Магазин розпочинає свою роботу о 7 год. Тривалість робочого дня 15 год. Обідня перерва триває 2 год. О котрій годині магазин завершує свою роботу?”; 3) задачі геометричного змісту, які включають до себе найрізноманітніші задачі на знаходження периметра чи площі, наприклад: “Довжина ділянки 21 см, а ширина - на 14 см довша. Знайди периметр і площу ділянки.”; 4) задачі, пов’язані з дробами, які можуть бути трьох видів: а) задачі на знаходження частини числа, наприклад: “Від смужки довжиною 18 см відрізали її частину. Яка довжина відрізаної смужки?”; б) задачі на знаходження дробу від числа, наприклад: “Від смужки довжиною 16 см відрізали ¾ її частини. Яка довжина відрізаної смужки?”; в) задачі на знаходження числа за його частиною, наприклад: “ частина смужки складає 3 см. Яка довжина всієї смужки?”. Які ж особливості притаманні ТМО навчання учнів розв'язувати складені задачі названих вище груп? – вони не мають принципових відмінностей від методики роботи над будь-якою складеною задачею, тобто вони передбачають, по-перше, проведення підготовчої роботи до введення кожного із видів задач з типовим конкретним змістом і сюжетом, по-друге, - ознайомлення із розв’язуванням задач цього виду, і, по-третє, - формування вмінь розв'язувати такі задачі. З іншого боку, ТМО роботи над будь-якою текстовою задачею передбачають ознайомлення з умовою задачі, проведення аналізу задачі, складання плану її розв’язання, запис розв’язання та роботу над розв’язаною задачею. Враховуючи сказане, приступимо до розкриття ТМО навчання учнів розв'язувати складені задачі з типовим конкретним змістом і сюжетом. Яка ж підготовча робота повинна проводитися перед введенням складених задач на рух? - аналіз методичної літератури дозволяє зробити висновок про те, що підготовчою роботою до ознайомлення дітей із задачами, які пов’язані з рухом є: 1) формування уявлень дітей про швидкість, час і відстань; 2) ознайомлення школярів з одиницями вимірювання цих величин і співвідношенням між ними; 3) розв'язування вправ на знаходження значень однієї величини за двома відомими іншими; 4) розв’язання простих задач або на знаходження відстані за відомими швидкістю і часом, або на знаходження швидкості за відомими відстанню та часом, або на знаходження часу за відомими відстанню та швидкістю. Всі ці три види задач можна представити у вигляді таблиці (див. таблицю № 11.39.).
Таблиця № 11.39.
У підручниках з математики для початкових класів є наступні види простих задач, пов’язаних з рухом, але які відмінні від представлених у таблиці № 11.39.: 1) задачі на зустрічний рух (наприклад: “Із двох міст о 18 год одночасно вийшли назустріч один одному два поїзди. Зустрілися вони о 15 год. Скільки годин перебували в дорозі до зустрічі обидва поїзди?”, “Два пішоходи рухалися назустріч один одному. Швидкість одного 5 км/год., а другого – 4 км/год. На скільки кілометрів вони зблизяться за 1 год?; 2 год?; 5 год?”). При розв’язанні таких задач корисно використовувати ілюстрацію (див. малюнок № 11.5.). Незважаючи на те, що швидкість пішоходів не дуже відрізняється, але на малюнку треба, по можливості, зображати стрілки так, щоб ці відмінності були помітними; 2) задачі, пов’язані з рухом у протилежних напрямках (наприклад: “Два катери рухалися по річці у протилежних напрямках. Швидкість першого 24 км/год, а іншого 37 км/год. На скільки кілометрів вони віддаляються один від одного за 1 год? за 2 год?; за 5 год?”). До цих задач також корисно використати графічну ілюстрацію (див. малюнок №11.6.); 3) задачі на рух в одному напрямку навздогін (наприклад: “Із двох міст, відстань між якими 120 км одночасно в одному напрямку виїхали автомобіль із швидкістю 60 км/год і мотоцикліст із швидкістю 80 км/год. На скільки кілометрів зменшиться відстань між ними через 1 год?; через 2 год?”). Графічна ілюстрація до таких задач представлена на малюнку № 11.7. При розв’язуванні вказаних простих задач слід особливу увагу звертати на те, щоб діти добре розбиралися у суті задач. Для цього слід обов’язково пропонувати дітям давати відповіді, наприклад, на такі запитання: коли виїхали мотоцикліст і автомобіль? – одночасно. Як вони рухалися? – в одному напрямку. Чому пішоходи зближаються? - бо рухаються назустріч. На скільки наближається за годину перший пішохід? – на 5 км. На скільки наближається за годину другий пішохід? – на 4 км. На скільки кілометрів наближаються один до одного за годину обидва пішоходи? – на суму їхніх швидкостей. Чому катери віддаляються один від одного? – бо вони рухаються у протилежних напрямках. На скільки буде віддалятися за одну годину перший катер? – на 24 км. На скільки буде віддалятися за одну годину другий катер? – на 37 км. На скільки будуть віддалятися один від одного за одну годину обидва катери? – на суму їхніх швидкостей. Чому мотоцикліст буде наздоганяти автомобіль? – бо його швидкість більша. Чи можна визначити на скільки мотоцикліст буде наздоганяти автомобіль за годину? – можна, знайшовши різницю швидкостей.
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|