МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||
Мета роботи: вивчити способи переводу чисел з однієї системи числення в іншу та представлення від'ємних і дробових чисел у пам'яті комп'ютера.Теоретичні відомості Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Основою системи числення називається число, яке означає, у скільки разів одиниця наступного розряду більше за одиницю попереднього. Дискретне повідомлення містить набір чисел і символів. Кожне число містить цифри. Утворення чисел у будь-якій системі числення проводять таким чином: фіксують позиції, що називаються розрядами, кожному розряду присвоюють свою вагу hі (де і – номер розряду); hi=pi (p — основа системи); в розрядах розміщують цифри аі. Тоді будь-яке число А можна подати у вигляді: , де n – число знаків до коми; m – число знаків після коми. Послідовність цифр an-1, an-2,....., a1, a0, a-1, a-2,......, a-m можна розглядати як код числа в заданій системі числення. Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. У цифровій техніці використовуються так звані позиційні системи числення. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною. У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І — один, V — п'ять, Х — десять, С — сто, Z — п'ятдесят, D — п'ятсот, М — тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції. Основою позиційної системи числення є число десять. Загальновживана форма запису числа є насправді не що інше, як скорочена форма запису розкладу за степенями основи системи числення, наприклад: 130678 = 1*105+3*104+0*103+6*102+7*101+8. Тут 10 є основою системи числення, а показник степеня — це номер позиції цифри в записі числа (нумерація ведеться зліва на право, починаючи з нуля). Наприклад, додаючи два багатозначних числа, застосовуємо правило додавання стовпчиком. При цьому все зводиться до додавання однозначних чисел, для яких необхідним є знання таблиці додавання. У процесі налагодження програм та в деяких інших ситуаціях у програмуванні актуальною є проблема переведення чисел з однієї позиційної системи числення в іншу. Проблема вибору системи числення для подання чисел у пам'яті комп'ютера має велике практичне значення. В разі її вибору звичайно враховуються такі вимоги, як надійність подання чисел при використанні фізичних елементів, економічність (використання таких систем числення, в яких кількість елементів для подання чисел із деякого діапазону була б мінімальною). Якщо основа нової системи числення дорівнює деякому степеню старої системи числення, то алгоритм переводу дуже простий: потрібно згрупувати справа наліво розряди в кількості, що дорівнює показнику степеня і замінити цю групу розрядів відповідним символом нової системи числення. Цим алгоритмом зручно користуватися, коли потрібно перевести число з двійкової системи числення у вісімкову або шістнадцяткову. Наприклад, 101102=10110=268, 10111002=1011100=5C8 У двійковому відбувається за зворотнім правилом: один символ старої системи числення заміняється групою розрядів нової системи числення, в кількості рівній показнику степеня нової системи числення. Наприклад, 4728=100111010=1001110102, B516=10110101=101101012 У цифровій техніці найпоширенішою для подання чисел у пам'яті комп'ютера є двійкова система числення. Для зображення чисел у цій системі необхідно дві цифри: 0 і 1, тобто достатньо двох стійких станів фізичних елементів. Наприклад, число 25.5 в десятковій і двійковій системах числення може бути подане у вигляді Значно рідше використовують вісімкову і шістнадцяткову системи. Їх застосовують при складанні програм для більш зручного та короткого запису двійкових кодів команд, бо ці системи не вимагають спеціальних операцій для переведення в двійкову систему. 1. Правила виконання арифметичних дій над двійковими числами
Оскільки 23 = 8, а 24 = 16, то кожних три двійкових розряди зображення числа утворюють один вісімковий, а кожних чотири двійкових розряди — один шістнадцятковий. Тому для скорочення запису адрес та вмісту оперативної пам'яті комп'ютера використовують шістнадцяткову й вісімкову системи числення. Основа однієї системи числення дорівнює деякому степеню іншої. У протилежному випадкові користуються правилами переведення числа з однієї позиційної системи числення в іншу (найчастіше для переведення із 2-ї, 8-ї та 16-ї систем числення у 10-у і навпаки).
|
||||||||||||||||
|