Using Newton's Laws in the late 1790s, John Michell of England and Pierre LaPlace of France independently suggested the existence of an "invisible star." Michell and LaPlace calculated the mass and size — which is now called the "event horizon" — that an object needs in order to have an escape velocity greater than the speed of light. In 1967 John Wheeler, an American theoretical physicist, applied the term "black hole" to these collapsed objects.
9. What evidence do we have for the existence of black holes?
Astronomers have found convincing evidence for a supermassive black hole in the center of the giant elliptical galaxy M87, as well as in several other galaxies. The discovery is based on velocity measurements of a whirlpool of hot gas orbiting the black hole. In 1994, Hubble Space Telescope data produced an unprecedented measurement of the mass of an unseen object at the center of M87. Based on the kinetic energy of the material whirling about the center (as in Wheeler's dance, see Question 4 above), the object is about 3 billion times the mass of our Sun and appears to be concentrated into a space smaller than our solar system.
For many years x-ray emission from the double-star system Cygnus X-1 convinced many astronomers that the system contains a black hole. With more precise measurements available recently, the evidence for a black hole in Cygnus X-1 is very strong.