Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






Microwaves for Radar

World War II provided the impetus to harness microwave energy as a means of detecting enemy planes. Early radars were mounted on the Cliffs of Dover to bounce their microwave signals off Nazi bombers that threatened England. The word radar itself is an acronym for RAdio Detection And Ranging.

Radars grew more sophisticated. Special-purpose systems were developed to detect airplanes, to scan the horizon for enemy ships, to paint finely detailed electronic pictures of harbors to guide ships, and to measure the speeds of targets.

These were installed on land and aboard warships. Radar—especially shipboard scales toward an Allied victory in World War II.

Today, few mariners can recall what it was like before radar. It is such an important aid that it was embraced universally as soon as hostilities ended. Now, virtually every commercial vessel in the world has one, and most larger vessels have two radars: one for use on the open sea and one, operating at a higher frequency, to “paint” a more finely detailed picture, for use near shore.

Microwaves are beamed across the skies to fix the positions of aircraft in flight, an essential aid to control the movement of aircraft from city to city across the nation. These radars have also been linked to computers to tell air traffic controllers the altitude of planes in the area and to label them on their screens.

A new kind of radar, phased array, is now being used to search the skies thousands of miles out over the Atlantic and Pacific oceans. Although these advanced radars use microwave energy just as ordinary radars do, they do not depend upon a rotating antenna. Instead, a fixed antenna array, comprising thousands of elements like those of a fly’s eye, looks everywhere. It has been said that these radars roll their eyes instead of turning their heads

Text 7

Weight

Weight, or gravity, is the force which always acts downward, toward the center of the earth. It is the total sum of the masses of all its components and contents multiplied by the strength of the gravity, commonly referred to as the number of g’s. The weight may be considered to act as a single force, representing all its components and contents, through a single point called the center of gravity.

Weight is the most reliable force, which always acts in the same direction and gradually decreases as airplane fuel is used. The center of gravity shifts as the weight is redistributed. Although the terms “mass” and “weight” are often confused with each other, it is important to distinguish between them. Mass is a property of a body itself and measures a body’s quantity of matter. Weight, in contrast, is a force representing the force of gravity acting on a body. It is also loosely called gravity. To illustrate the difference, one could describe an object that is taken to the Moon, where the force of gravity is weaker, about one-sixth that on Earth. On the Moon, the object will weigh only about one-sixth as much as it did on Earth. The mass of the object will be the same on the Moon or anywhere else. In other words, it will continue to have the same amount of matter.

 

Text 8

Drag

When an object moves relative to a fluid, either a gas or a liquid, the fluid exerts a frictional force on the object. This force which is referred to as a drag force, is due to the viscosity, or stickiness, of the fluid and also, at high speeds, to the turbulence behind and around the object. To characterize the motion of an object at different speeds relative to the fluid and to understand the associated drag, it is useful to understand Reynolds numbers. The Reynolds number depends on the properties, such as length and velocity, of the fluid and the object relative to the fluid. In case of an airplane, which flies through air, the Reynolds number for air is smaller than that for water because of the lower density of the air. For example, an object of one millimeter long moving with a speed of 1 millimeter per second through water has the same Reynolds number as an object 2 millimeters long moving at a rate of 7 millimeters per second in the air. The drag manifests itself differently for different Reynolds numbers associated to it.

When the Reynolds number is less than 1, as in the case of fairly small objects, such as raindrops, the viscous force is directly proportional to the speed of the object. For large Reynolds numbers, usually above a value between about 1 and 10, there will be turbulence behind the body, known as wake, and hence, the drag force will be larger and it increases as the square of the velocity instead of its linear dependence on the velocity. When the Reynolds number approaches a value of around 1,000,000, the drag force increases abruptly. For above this value, turbulence exits in the layer of fluid lying next to the body all along its sides.

 

Text 9

Lift

Airplane wings and other airfoils are designed to deflect the air so that, although streamline flow is largely maintained, the streamlines are crowded together above the wing. Just as the flow lines are crowded together in a pipe constriction where the velocity is high, so the crowded streamlines above the wing indicate that the airspeed is greater than below the wing. Hence, according to Bernoulli’s principle which states that velocity increases as pressure decreases, the air pressure above the wing is less than that below the wing, and there is a net upward force, which is called dynamic lift, or lift.

In fact, Bernoulli’s principle is only one aspect of the lift on a wing. Wings are usually tilted slightly upward so that air striking the bottom surface is deflected downward. The change in momentum, a product of mass and velocity, of the rebounding air molecules results in an additional upward force on the wing. As the air passes over the wing, it is bent down. The bending of the air is the action; the reaction is the lift on the wing. To generate sufficient lift, a wing must divert air down. To increase the lift, either or both the diverted air and downward velocity must be incremented.

 




Переглядів: 550

<== попередня сторінка | наступна сторінка ==>
How do aeronautical engineers study aircraft and design new ones? | Text 10

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.004 сек.