Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Поняття випадкової величини

Поняття випадкової величини грає важливу роль у теорії статистичної радіотехніки, насамперед у зв'язку з тим, що дозволяє перейти від якісного опису характеристик випадкових подій до їхнього кількісного визначення.

Наприклад, подію, що складається у відмові радіостанції можна розглядати як випадкову величину , що дорівнює 1, якщо відмова відбувається, і дорівнює 0, якщо відмоване відбувається. У цьому випадку випадкова величина є скалярною й дискретною, приймаючою тільки два значення: 0 і 1.

Часто для обчислення ймовірності події виявляється зручним зв'язати її з якоюсь неперервною випадковою величиною (або системою неперервних величин), що приймає нескінченну кількість значень. Нехай, наприклад, виміряються координати повітряного судна, які відображаються на індикаторі наземної радіолокаційної станції. Подія полягає в тому, що похибка у визначенні місця знаходження повітряного судна не перевершить заданого значення . Для оцінки ймовірності запровадимо випадкові величини й , що характеризують похибки оцінки місця розташування по кожній із координатних площин. Очевидно, що для виконання події повинна задовольнятися нерівність

.

Імовірність у цьому випадку виражається через характеристики системи (вектора) двох неперервних випадкових величин і . Наведені приклади дозволяють дати загальне визначення випадкової величини.

Випадковою називається величина, яка у результаті досліду приймає те або інше значення, що заздалегідь передбачено бути не може.

Випадковою величиноюназивається числова функція, аргументом якої є наслідки випадкового досліду (події).

Співвідношення, що встановлює в тій або іншій формі залежність між можливими значеннями випадкової величини і їхніх ймовірностей, називається законом розподілу. Закон розподілу може бути заданий у формі ряду ймовірностей; функції розподілу або щільності ймовірності, кожна з яких забезпечує повний статистичний опис випадкової величини.




Переглядів: 732

<== попередня сторінка | наступна сторінка ==>
 | 

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.001 сек.