![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Теплота, підведена ззовні до робочого тіла, витрачається на здійснення роботи зміни об’єму РТ і на зміну внутрішньої енергії.За одиницю роботи і теплоти прийнятий 1 Дж. Тоді одиницею потужності буде 1Дж/с = 1Вт. У техніці широко застосовується позасистемна одиниця вимірювання теплової енергії –калорія (кал). 1 кал = 4,187Дж, або 1ккал=4,187кДж. 1 кал відповідає 427 кГ·м (механічний еквівалент теплоти). Робота 1 кВт за годину (1 кВт·год) відповідає 860 ккал (тепловий еквівалент кіловат-години). Тоді годинна кількість теплоти 1 ккал/год буде еквівалентною 1,16 Дж/сек (Вт), а 1Вт відповідає 0,857 ккал/год, 1 MВт = 0,857 Гкал/год.
ΔU = U2 – U1 = q1-2 – l1-2, кДж/кг.
Це свідчить про те, що внутрішня енергія РТ може зменшуватись як при відведенні, так і при підведенні теплоти. Так, якщо у процесі відбувається розширення робочого тіла, то здійснюється робота l1-2 > 0 і теплота відводиться від РТ. Якщо при цьому кількість теплоти q1-2, яка підводиться до робочого тіла буде меншою за роботу (q1-2 < l1-2), то внутрішня енергія зменшується, (U2 – U1 < 0), витрачаючись частково на виконання роботи.
Для РТ, що рухається в каналі довільної форми (для потоку), в перетворенні енергії бере участь не тільки внутрішня енергія, а й потенціальна енергія тиску, прикладеного до потоку, і потенціальна енергія гравітації. Останньою, як правило, нехтують унаслідок її незначних величин. Тоді енергія тіла здатна перетворюватися в приріст кінетичної енергії й у зовнішню роботу, складається із внутрішньої енергії U та потенціальної енергії тиску pυ
і = U + pυ.
Ця величина називається ентальпією і в потоці (відкритій системі) характеризує повну енергію робочого тіла. Аналітичний вираз першого закону термодинаміки в диференціальній формі через ентальпію
dU = di – d(pυ) = di – pdυ – υdp, dq = dU + dl = di – pdυ – υdp + pdυ, dq = di – υdp.
v , кДж/кг.
Це робота зовнішніх сил, що діють на РТ. У закритих системах розрахункова робота витрачається для збереження незмінним об’єму робочого тіла υ, обмеженого непружними стінками системи. Розрахункова робота l0 дорівнює зміні потенціальної енергії тиску системи. У відкритих системах (для потоку) розрахункова робота складається із роботи розширення pdυ і роботи потенціальної енергії тиску d(pυ). При зменшенні тиску й потенціальної енергії потоку робота, в яку вона перетворюється, має додатне значення. При стискуванні робочого тіла у потоці необхідно підвести зовнішню роботу, і вона матиме від’ємне значення. Залежністю користуються, наприклад, при встановленні витрат роботи на стискування пружної рідини (води, нафти, конденсату тощо), при адіабатних умовах (dS = 0, dq = 0). При стискуванні рідин величина питомого об’єму υпрактично не змінюється, υ = const. Для потоку робочого тіла перший закон термодинаміки має загальний вигляд
Таким чином, теплова енергія, що підведена до рухомого робочого тіла у каналі, витрачається на наступне: – зміну кінетичної енергії потоку – – роботу для підйому РТ із висоти h1 до h2, ; (при h1= h2 ця робота відсутня) – виконання технічної роботи або одержання технічної роботи (за наявності у потоці обертових пристроїв). За відсутності таких пристроїв цієї роботи не буде , lтехн = 0; – роботу на подолання сил тертя на стінках каналу. За відсутності сил тертя або їх знехтуванні у зворотних процесах, lтр = 0.
Другий закон термодинаміки встановлює напрямок, у якому проходять процеси, й умови перетворення теплоти в роботу, а також максимально можливу величину роботи. Неперервне перетворення теплоти в роботу можливе тільки в круговому процесі (циклі), за яким працюють теплові двигуни. Для цього цикл повинен складатись з елементарних зворотних процесів, у частині яких теплота підводиться до робочого тіла (dq > 0, dS > 0) і здійснюється робота із розширення (dυ > 0, dl> 0), а в інших – теплота відводиться (dq < 0, dS < 0), витрачається зовнішня робота, а РТ стискується (dυ < 0, dl< 0). У результаті робоче тіло повертається у вихідний стан. Самовільний перехід теплоти від тіла з меншою температурою до тіла з більшою температурою не можливий без компенсації (у вигляді зовнішньої роботи) – таке формулювання II закону термодинаміки відоме під назвою постулату Клаузиса. Існує ще декілька формулювань другого закону термодинаміки: – для здійснення циклу теплового двигуна необхідно мати не менше від двох джерел теплоти різної температури (гаряче і холодне); – не можливе існування вічного двигуна другого роду, в якому теплота тільки підводилась би, неминучим є відведення теплоти до холодного джерела теплоти. Усі формулювання другого закону термодинаміки справедливі для зворотних ідеальних процесів. Термічний ККД – відношення корисно використаної теплоти q0 (одержаної роботи l0) до всієї теплоти, затраченої для здійснення циклу q1; визначає термодинамічну ефективність циклу
де q1 – теплота, підведена в циклі до робочого тіла від гарячого джерела теплоти, кДж/кг; q2 – теплота, відведена від РТ до холодного джерела теплоти, кДж/кг. Найбільш повне перетворення теплоти в роботу відбувається в ідеальному циклі теплового двигуна – циклі Карно. Він складається із двох ізотерм (Т1 = сonst 1–2, Т2 = сonst 3–4) і двох адіабат (dq=0 2–3і4–1). Зображення таких процесів у складі циклу Карно показано в координатах Р– υ і Т– S на рис.2. Площа під лінією процесу в Р– υ діаграмі характеризує роботу процесу, а в координатах Т– S площа під лінією процесу означає кількість теплоти, що підводиться (при dS > 0) або відводиться (dS < 0) у процесі. Для ідеального, ізольованого зворотного циклу сума величин зміни ентропії для всіх процесів циклу Це пояснюється незворотністю довільних природних процесів переходу теплоти від більшої температури до меншої при нагріванні РТ і підведенні до нього теплоти, а також збільшенням ентропії при незворотному адіабатному стискуванні ідеального газу. Нерівність називають законом збільшення ентропії. В ідеальних недовільних (примусових) процесах, пов’язаних із передачею енергії від тіл з меншою температурою до тіл з більшою температурою, перетворення енергії відбувається всупереч її природному характеру. В таких процесах ентропія зменшується. Отже, величина зміни ентропії Рис.2. Цикл Карно в Р– υ і Т– S - координатах
У довільних природних процесах різниця потенціалів зменшується, система наближається до стану рівноваги, втрачається можливість системи здійснювати роботу, теплота переходить до меншого потенціалу і втрачається у навколишньому середовищі. Система таким чином деградує. Відповідно до першого закону термодинаміки q1-2 = ΔU1-2 + l1-2; q2-3= 0 = ΔU2-3 + l2-3, кДж/кг; q3-4 = ΔU3-4 + l3-4; q4-1= 0 = ΔU4-1 + l4-1, кДж/кг. Теплота, що буде використана для здійснення роботи
q0 = q1-2–|q3-4| = l0, кДж/кг. Згідно із Т– S - діаграмою:
q1-2 = Т1(S2 – S1);q3-4 = Т2(S3 – S4);S2 – S1 = S3 – S4, кДж/кг.
Термічний ККД визначають за формулою
Таким чином, цикл Карно має максимально можливий ККД при заданих Т1 та Т2 i не залежить від фізичних характеристик робочого тіла (теорема Карно).
|
||||||||
|