Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Властивості неперервних функцій

Теорема 1. Якщо функції і неперервні у точці то у цій точці будуть неперервними функції ; в останньому випадку за умови, що

Теорема 2. Якщо функція — неперервна для а функція — неперервна для і значення функції то складна функція — неперервна для

Приклад. Дослідити функції на неперервність.

Оскільки то функцію можна вважати суперпозицією таких неперервних функцій: Отже, за теоремою 2 функція — неперервна

Тепер за теоремою 1 неважко встановити, що функція — неперервна а функція — неперервна як відношення неперервних функцій

Зауваження. Можна довести, що всі основні елементарні функції будуть неперервними в кожному з відкритих проміжків своєї області визначення.

Теорема 3 (Коші). Якщо функція неперервна на закритому проміжку і на кінцях проміжку набуває значення різних знаків (наприклад ), тоді на відкритому проміжку існує така точка х = с, що (рис. 2).

Рис. 2

Наслідок. Якщо функція неперервна на і то на набуває всіх проміжних значень між числами А і В.

Теорема 4 (Вейєрштрасса). Якщо функція неперервна на закритому проміжку , то вона набуває на цьому проміжку своїх найбільших й найменших значень.(рис. 3).

Рис. 3




Переглядів: 910

<== попередня сторінка | наступна сторінка ==>
Поняття неперервності функції | Класифікація точок розриву функцій

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.011 сек.