МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||
Методика дослідження функцій на неперервність1. Знайти область визначення функції 2. Дослідити функцію на неперервність у відкритих проміжках 3. Визначити скінченні граничні точки (с.г.т.) і обчислити односторонні границі функції у цих точках.
4. Зробити висновок про характер точок розриву (якщо вони є) і побудувати графік функції поблизу цих точок. Для зручності побудови графіка функції рекомендується записати координати граничних точок графіка функції Символічний запис абсциси граничної точки означає, що абсциса довільної точки графіка функції прямує до х0 зліва (х0 – 0) або справа (х0 + 0); а запис означає, що ордината довільної точки графіка функції при цьому прямує до у0 знизу (у0 – 0) або зверху (у0 + 0). Наприклад, для граничних точок і графік функції підходить до цих точок так, як показано на рис. 4. До точки Р1 графік підходить зліва і зверху, а до точки Р2 — справа і знизу. Приклад. Дослідити на неперервність функцію l Область визначення цієї функції На кожному з інтервалів області визначення функція буде неперервна, як суперпозиція неперервних елементарних функцій. Скінченною граничною точкою D функції буде х = 1. Обчислимо такі границі: Отже, х = 1 — точка розриву 2-го роду, бо одна з односторонніх границь не існує. Граничні точки графіка функції: Р1 (1 – 0; + 0), Р2(1 + 0; + ¥). Графік функції поблизу точки розриву показано на рис. 5. Зауважимо, що гранична точка Р2 (1 + 0; + ¥) лежить на нескінченності.
Рис. 5 Рис. 6 Приклад. Дослідити на неперервність функцію l Ця функція буде неперервною на кожному з проміжків (–¥; 0) і (0; + ¥), бо є суперпозицією неперервних елементарних функцій. Границі — не існують. Отже, точка х = 0 — точка розриву функції 2-го роду. Записати координати граничних точок графіка функції неможливо, тому і побудувати графік функції поблизу самої точки розриву не можна (рис. 6). Приклад. Дослідити на неперервність функцію . l Скорочений запис розв’язування задачі: — неперервна, як суперпозиція елементарних функцій. х = 0 — с.г.т. D(y).
Таким чином, точка х = 0 є точкою розриву функції 1-го роду (розрив усувний), бо односторонні границі існують і рівні між собою (сама функція при х = 0 не існує). Граничні точки графіка функції і зливаються в одну точку (рис. 7). Приклад. Дослідити на неперервність функцію l Після розкриття функція перепишеться так: На кожному з інтервалів функція неперервна. Розглянемо односторонні границі функції у точці х = – 2.
Отже, точка х = – 2 — точка розриву 1-го роду (розрив неусувний), бо односторонні границі функції у цій точці існують, але не рівні між собою. Граничні точки графіка функції такі: (рис. 8).
|
|||||||||||
|