МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Задачі до розділу 2.3Задача 2.3.1 На складі зберігається продукція з трьох партій, відомо, що з I партії 90% продукції відповідає стандарту, з II партії – 80%, з III партії – 85%. З кожної партії обрано по одиниці продукції. Знайти ймовірність того, що всі три одиниці стандартні.
Рішення
Розглянемо події: А – продукція I партії стандартна; В – продукція II партії стандартна; С – продукція III партії стандартна. Обрання стандартної продукції з I, II, III партій є подіями незалежними, причому такими, що відбуваються одночасно. Тому застосуємо теорему множення ймовірностей незалежних подій. Р(А) =0,9 Р(В) =0,8 Р(С) =0,85
Задача 2.3.2
Два біатлоністи стріляють по мішенях. Ймовірність влучення для першого біатлоніста 0.85, а для другого - 0.9. Знайти ймовірність того, що влучить у мішень тільки один біатлоніст.
Рішення
Подія А – влучить у мішень тільки один біатлоніст. Подія А відбудеться у випадку: влучить в мішень тільки перший біатлоніст, а другий не влучить; або у випадку: влучить в мішень другий біатлоніст, а перший не влучить. Позначимо події: подія В –перший біатлоніст влучить у мішень; подія С –другий біатлоніст влучить у мішень і протилежні їм події: - перший біатлоніст не влучить у мішень; - другий біатлоніст не влучить у мішень. Тоді за допомогою теорем додавання й множення ймовірностей отримаємо:
Р(А)=Р(В) +Р(С) , де Р(В)=0,85, Р(С)=0,9 , а протилежні їм події мають ймовірності
= 1 - Р(В) = 1 – 0,85 = 0,15; = 1 – Р(С) = 1 – 0,9 = 0,1.
Р(А)= Задача 2.3.3 Відділ технічного контролю перевіряє вироби на стандартність. Ймовірність того, що вироб стандартний 0.75. Знайти ймовірність того, що з трьох перевірених виробів тільки один стандартний.
Задача 2.3.4 Студент розшукує потрібне йому питання в трьох підручниках. Ймовірність того, що питання міститься в першому підручнику 0,4; в другому підручнику 0,7, а в третьому підручнику 0,75. Знайти ймовірність того, що питання міститься у всіх трьох підручниках.
Задача 2.3.5
Кинуто три гральних кубики. Знайти ймовірність того, що на верхніх гранях всіх кубиків випаде число 3.
|
||||||||
|