Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Розділ 3.4. Завдання до заняття 3

Теоретичні питання до розділу 3

1. Сформулювати теорему про ймовірність появи хоча б однієї події.

2. Які події утворюють повну групу?

3. Сформулювати теорему про повну ймовірність.

4. Що ви розумієте під терміном „гіпотеза”.

5. Записати формулу Бейєса та пояснити її складові.

 

 

Розділ 4.1. Формула Бернуллі

 

Нехай виконується п незалежних випробувань, в кожному з яких подія А може з’явитися або ні. Ймовірність появи події А в кожному випробуванні однакова і дорівнює р. Відповідно, ймовірність того, що подія А не з’явиться в кожному випробуванні також постійна і дорівнює .

Необхідно визначити ймовірність того, що при п випробуваннях подія А з’явиться рівно раз, тобто не з’явиться раз, причому не має значення у якій послідовності з’являється подія А. Наприклад, подія А з’явиться 3 рази у 4-х випробуваннях: .

Позначимо шукану ймовірність ймовірність однієї складної події, яка полягає в тому, що в п випробуваннях подія А з’явиться рівно раз і не з’явиться раз, тоді за теоремою множення ймовірностей незалежних подій вона дорівнює . Таких складних подій може бути стільки, скільки можна скласти сполучень з п елементів по k елементах, тобто . Оскільки ці складні події несумісні, тому за теоремою додавання ймовірностей несумісних подій, шукана ймовірність дорівнює сумі ймовірностей всіх можливих складних подій. Оскільки всі складові однакові, то шукана ймовірність дорівнює ймовірності однієї складної події, помноженої на їх кількість.

 

, (4.1)

 

або

.

 

 

Приклад:

Ймовірність того, що витрати електроенергії впродовж однієї доби не перевищать встановленої норми, дорівнює 0,8. Знайти ймовірність того, що найближчі 6 діб витрати електроенергії протягом 4 будь-яких діб не перевищать норми.




Переглядів: 441

<== попередня сторінка | наступна сторінка ==>
Задачі до розділу 3.3 | Рішення

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.002 сек.