Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Біноміальний закон розподілу

Якщо ймовірність появи події у всіх незалежних випробуваннях однакова, тоді її можна знайти за формулою Бернуллі. У цьому випадку закон розподілу дискретної випадкової величини носить назву біноміального.

Означення: Біноміальним називають розподіл ймовірностей, які визначаються за формулою Бернуллі.

 

, де (10.1)

 

Закон названо біноміальним тому, що праву частину рівності (10.1) можна розглядати як загальний член розкладу бінома Ньютона

 

.

 

Запишемо біноміальний закон у вигляді таблиці

 

Х . . . . . . 0
Р . . . . . .

 

Приклад:

Монету підкинули два рази. Скласти закон розподілу дискретної випадкової величини Х – числа появи „герба”.

 

Рішення

 

Ймовірність появи „герба” при кожному киданні монети однакова і дорівнює , відповідно ймовірність випадання „числа” .

Розглянемо всі можливі значення дискретної випадкової величини .

Відповідні ймовірності знайдемо за формулою Бернуллі:

 

 

 

 

Закон розподілу дискретної випадкової величини Х має вигляд

 

Х
Р 0,25 0,5 0,25

 

Для біноміального розподілу справедливі наступні теореми.

Теорема: Математичне сподівання числа появи події А в п незалежних випробуваннях дорівнює добутку числа випробувань на ймовірність появи події у кожному випробуванні

 

. (10.2)

 

Доведення

 

Будемо розглядати дискретну випадкову величину Х – числа появи події А в п незалежних випробуваннях. Нехай:

 

- число появи події у першому випробуванні;

- число появи події у другому випробуванні;

.................................................................................

- число появи події у -му випробуванні.

 

Тоді за теоремою додавання , а ймовірність появи події

.

Оскільки події є повторними, то .

Тоді: , що і треба було довести.

Іншими словами теорему можна сформулювати: математичне сподівання біноміального розподілу з параметрами п і р дорівнює добутку п·р.

Приклад:

Ймовірність влучення в ціль при стрільбі з гармати р=0,8. Знайти математичне сподівання загального числа влучень, якщо зроблено 5 пострілів.

 

Рішення

 

Події – влучення при кожному пострілі є незалежними і повторними, тому розподіл дискретної випадкової величини Х – числа влучень при 5 пострілах з гармати є біноміальним. Тому за формулою (10.2) знайдемо середнє число влучень

 

.

 

Теорема: Дисперсія числа появи події А в п незалежних випробуваннях, в кожному з яких ймовірність р появи події однакова, дорівнює добутку числа випробувань на ймовірності появи і не появи події в одному випробуванні

 

. (10.3)

 

Доведення

 

Розглянемо дискретну випадкову величину Х – числа появи події А в п незалежних випробуваннях

 

, де - взаємно незалежні події.

 

Тоді, за властивістю дисперсії

 

,

 

де .

 

Для знаходження складових попередньої формули, складемо розподіли

 

Х   Х2
Р p q Р p q

 

Звідси,

 

Тоді,

.

 

Іншими словами, дисперсія біноміального розподілу з параметрами п і р дорівнює добутку .

 

Приклад:

Зроблено 10 незалежних випробувань, в кожному з яких ймовірність появи події дорівнює 0,8. Знайти дисперсію випадкової величини Х – числа появи події у цих випробуваннях.

 

Рішення

 

Знайдемо ймовірність не появи події

 

За формулою (10.3)

 

 

Розподіл Пуассона.

Нехай виконується п незалежних випробувань, при умові, що значення п досить велике, а ймовірність появи події А в кожному випробуванні дорівнює р і значення р є малим ( ), тоді при заданні закону розподілу для знаходження ймовірності користуються формулою Пуассона

 

, де (10.4)

 

Тоді заданий таким чином закон розподілу носить назву розподілу Пуассона.

 

 




Переглядів: 5125

<== попередня сторінка | наступна сторінка ==>
 | Геометричний розподіл.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.018 сек.