МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||
В 150 В 300 В
Переносні вольтметри у більшості випадків виготовляють на декілька границь вимірювання напруги. У цих вольтметрів є декілька внутрішніх додаткових опорів, що послідовно з'єднані як між собою, так і з обмоткою вимірювального механізму. Схему триграничного вольтметра, розрахованого на границі вимірювань 75... 150...300 В, зображено на рис. 8.4. Зазначимо, що додаткові опори, зображені на схемі Rд1, Rд2і Rд3, в дійсності можуть складатись із кількох котушок (кожний), одну з яких використовують для того, щоб можна було при виготовленні вольтметра підігнати величину загального опору приладу для кожної границі вимірювань до величини, вказаної на шкалі цього приладу. Вольтметр перемикають для вимірювань при різних напругах шляхом приєднання одного провідника, що підводить напругу від місця вимірювання до відповідного затискача вольтметра. Звичайно, для безпеки на час перемикання границь вимірів напруги контрольоване цим вольтметром електричне коло необхідно вимкнути з мережі. Щоб кожного разу цього не робити, у багатьох випадках вольтметри виконують з важільними чи кнопковими перемикачами границь вимірювання. Вольтметри з перемикачами можуть мати дещо складнішу схему. Наприклад, при перемиканнях границь виміру напруги виникає можливість не тільки змінювати величину додаткових опорів, а ще й перемикати з послідовного на паралельне з'єднання секції котушок вимірювального механізму електродинамічних і електромагнітних вольтметрів. Саме для цього котушки цих приладів заздалегідь намотують двома (а то й трьома) проводами паралельно. Такі схеми дають можливість суттєво зменшити потужність, споживану приладом при вимірах відносно високих напруг, порівняно з вольтметрами, схеми яких схожі на схему, що наведена на рис. 8.4. Мілівольтметри виконують за найпростішими схемами і частіше за все з однією границею вимірювань напруги. Створюють їх на основі магнітоелектричних вимірювальних механізмів для вимірів на постійному струмі. Величину електричного струму, що проходить через будь-яку ділянку електричного кола, вимірюють амперметром, який вмикається послідовно зі споживачем електричної енергії, що є на цій ділянці. Частину розгалуженого електричного кола з амперметрами, ввімкнутими в окремі його ділянки для виміру струмів, зображено на рис. 8.6. Амперметри А2 і АЗ вимірюють струми, що проходять по кожній з двох паралельних гілок, амперметр А1 вимірює загальний струм, споживаний від джерела живлення. Якщо джерело живлення є джерелом постійного струму, то сума струмів, вимірюваних амперметрами А2 і АЗ, має дорівнювати (у межах точності вимірів) струмові, вимірюваному амперметром А1. Те ж саме має бути при живленні від джерела змінного струму, якщо всі резистори (R1, R2 і RЗ), застосовані у схемі, є активними. При наявності ж у схемі резисторів з реактивними чи змішаними опорами, величина струму, вимірюваного амперметром А, може бути як меншою за суму струмів, виміряних амперметрами А2 і АЗ, так, в окремих випадках, і дорівнювати їй.
При вимірюваннях струмів у колах постійного струму можуть використовуватись магнітоелектричні, електродинамічні або теплові амперметри (міліамперметри). Феродинамічні та електромагнітні амперметри можна використовувати лише у тому разі, якщо на шкалах цих приладів позначено, що вони придатні для вимірів на постійному струмі. Якщо ж такого позначення немає, то при користуванні такими приладами можуть бути більші похибки, ніж це передбачено класом точності приладів. При вимірюваннях струмів у колах змінного струму можуть використовуватись електромагнітні, електродинамічні, феродинамічні, теплові, термоелектричні або випрямні амперметри. Магнітоелектричні амперметри зовсім непридатні для вимірів на змінному струмі, а їх помилкове вмикання в коло змінного струму може призвести лише до непорозуміння, бо відсутність відхилення їхніх покажчиків від нульової позначки (навіть при значних величинах змінного струму, що проходить через них) може спонукати спостерігача до збільшення напруги (якщо спостерігач може це зробити), що призведе до пошкодження елементів схеми, чутливих до значних напруг і струмів. Якщо величини струмів необхідно вимірювати у колах зі значними струмами, прямі вимірювання яких неможливі наявними амперметрами, то у колах постійного струму необхідно користуватися зовнішніми шунтами з приєднаними до них магнітоелектричними мілівольтметрами. У колах змінного струму користуються вимірювальними трансформаторами струму з електромагнітними, електродинамічними або феродинамічними амперметрами, розрахованими на величину номінального струму вторинних обмоток цих трансформаторів. Звичайно це 5 А, але може бути і 1 А. Вимірювання напруги є чи не найбільш поширеним видом вимірювань на електричному обладнанні. У більшості випадків для вимірювань напруги змінного струму в промисловості користуються електромагнітними вольтметрами, як такими, що мають просту конструкцію, надійні при користуванні та найдешевші за вартістю серед вольтметрів інших систем сумірного класу точності. У випадках, коли вимірювана напруга вища за 500...600 В, ці вольтметри використовують разом з вимірювальними трансформаторами напруги, здатними перетворювати змінну напругу номінальної для первинної обмотки трансформатора величини, у напругу 100 В, на яку розраховано вольтметри, призначені для роботи з цими трансформаторами. В цих випадках шкали вольтметрів градуюють у значеннях первинної (високої) напруги трансформатора. При цьому обов'язково повинен бути напис на шкалі про коефіцієнт трансформації необхідного вимірювального трансформатора напруги у вигляді дробу з номінальною первинною напругою його у чисельнику і номінальною напругою вторинної обмотки — у знаменнику. Для вимірювань напруг змінного струму придатні й електродинамічні вольтметри, але в основному їх використовують як переносні прилади для повірки інших вольтметрів. Досить часто для вимірювань напруг змінного струму користуються випрямними вольтметрами, що являють собою вимірювальний механізм магнітоелектричної системи, зкомбінований з напівпровідниковими випрямлячами та з додатковим опором, суміщеними в одному корпусі. Для вимірювання напруг постійного струму найдоцільніше користуватись магнітоелектричними вольтметрами, як такими, що потребують малої потужності живлення і мають значний обертовий момент вимірювального механізму, що зумовлює їх достатню надійність в експлуатації. На постійному струмі можна вимірювати напругу також приладами електродинамічної, електростатичної, електромагнітної і феродинамічної систем. У останніх двох випадках — якщо на їхніх шкалах є умовна позначка постійного струму. В устаткуваннях, де є напруги змінного струму підвищеної чи високої частоти, можна користуватись вольтметрами електростатичної чи випрямної системи. Напругу, що діє на будь-якій ділянці електричного кола, вимірюють вольтметрами, приєднаними паралельно з контрольованими ділянками. На схемі рис. 8.7 показано, як треба вмикати вольтметри для вимірювання напруг на різних ділянках електричного кола. Величину напруги мережі, чи якого іншого постачальника електричної енергії, вимірюють вольтметром V1, а величини напруг на опорах резисторів R1і R2 — вольтметрами V2 і VЗ. При вимірюваннях у електричних колах зі значними величинами опорів необхідно враховувати, що приєднання вольтметра до будь-якої ділянки кола може суттєво змінити режим її роботи.
В умовах виробництва, наприклад при пошуку пошкоджень у електричних колах, величини напруг на різних ділянках кола вимірюють одним вольтметром, який почергово приєднують до різних точок кола, як це показано на рис. 8.8. Щоб виміряти величину напруги джерела, вольтметр за допомогою щупів приєднують до точок А і D. Для вимірювання напруги на резисторі R1 — до точок А і В, на R2 — до точок В і С, на RЗ — до точок С і D.
Якщо опори R1, R2 і RЗ досить великі, а то й сумірні з власним опором вольтметра, то може статись, що сума напруг, виміряних на резисторах R1, R2 і RЗ, буде значно меншою, ніж напруга мережі. Пояснюється це тим, що під час вимірювання напруги, коли вольтметр приєднано паралельно до якогось з резисторів, дійсна величина опору між точками приєднання щупів буде дещо меншою за величину опору відповідного резистора. При цьому буде меншим і загальний опір кола, що може призвести до збільшення величини струму в колі та величин падіння напруг на інших опорах, що є у колі (тих, на яких у даний момент величина напруги не вимірюється). Таким чином, на контрольованій ділянці величина напруги буде меншою за ту, що буде при відсутності вольтметра. З цієї причини, наприклад при пошуку несправності в електронних схемах, недоцільно користуватися вольтметрами високих класів точності, що мають відносно невеликий опір. Доцільніше користуватись вольтметрами класу точності всього 2,5...4,0, але з великим власним опором. Саме такими бувають магнітоелектричні вольтметри, що є основою багатограничних приладів — тестерів. У цих приладів величина власного опору становить десь 8000...20 000 Ом на один вольт (тобто струм повного відхилення покажчика вольтметра становить 125...50 мкА). Тестери, звичайно, багатофункціональні вимірювальні прилади, але їхня основна функція — вимірювання напруги. Завдяки малій величині власного споживаного струму (як і споживаної потужності) ці прилади з додатковим опором, вмонтованим у шуп, що має підсилену ізоляцію, бувають здатні вимірювати напруги величиною до 25...30 кВ. Але, користуючись вольтметром з великим внутрішнім опором при пошуку пошкоджень у мережах з напругою до 600 В, треба пам'ятати, що ці вольтметри можуть показувати напругу на окремих ділянках мережі там, де її насправді немає. Тобто напруга там є тільки для самого вольтметра, а для якогось споживача електричної енергії, що потребує значно більшої потужності, ніж цей вольтметр, напруги зовсім не буде. Це явище виникає через наявність між проводами мережі (рис. 8.9) витоку електричного струму через опір ізоляції Яi1 Яi2 чи ємність С1 С21 між проводами. Тут показано, яким чином вольтметр, приєднаний між пошкодженим (розірваним) і непошкодженим проводом, може показувати напругу. Величина опору ізоляції нормована, і на більшості ділянок мереж промислових підприємств не повинна бути меншою ніж 0,5 МОм. Якщо зважити на те, що власний опір вольтметра, розрахованого на вимір напруги 600 В, може становити 12 МОм (якщо струм його повного відхилення становить 50 мкА), то можна встановити, що у найгіршому випадку опір ізоляції може становити лише 1/24 частину від власного опору вольтметра. Тобто вольтметр при такому приєднанні показуватиме майже повне значення напруги. Насправді він може показувати й дещо меншу частину повної напруги, якщо врахувати наявність опору ізоляції між третім провідником і пошкодженим. Але в обох випадках показання вольтметра буде суттєвим. Щоб запобігти такій похибці, досить скористатися для вимірів якимось іншим (наприклад, електромагнітним) вольтметром, у котрого власний опір при границі виміру напруги 600 В буде становити всього приблизно 40 000 Ом. Тобто для цього вольтметра величина найменшого опору ізоляції буде вже майже у 1 разів більшою за його власний опір. Отже, при вмиканні такого вольтметра покажчик ледь ворухнеться, що свідчитиме про відсутність напруги на пошкодженому проводі.
Якщо ж для вимірів неможливо використати вольтметр з обмеженою величиною власного опору, то пошкоджену ділянку електричної мережі можна знайти за допомогою вольтметра з великим власним опором, приєднавши при вимірах паралельно йому резистор (чи кілька резисторів, увімкнених послідовно) з загальною величиною опору 40...М) кОм і потужністю 7...10 Вт. Все сказане про пошук пошкодження за допомогою ви-сокоомного вольтметра можна цілком віднести й до застосування у подібних випадках електростатичних вольтметрів, якими взагалі у таких випадках не бажано користуватися. У мережах постійного і в однофазних мережах змінного струмів найчастіше застосовують ватметри . електродинамічної системи, більшість яких здатна працювати як на постійному, так і на змінному струмах. Хоча серед стаціонарних ватметрів, особливо тих, які призначено застосовувати з вимірювальними трансформаторами струму і напруги, є багато таких, що не призначені для використання на постійному струмі. Щодо переносних приладів, то такі ватметри можуть завжди використовуватись як на постійному, так і на змінному струмах. їх виробляють з класами точності 0,1; 0,2 і 0,5. Ватметри перших двох класів зручно використовувати як при градуюванні, так і при перевірці стаціонарних ватметрів нижчих класів точності (1,5; 2,5; 4,0). Схему стаціонарного ватметра відносно невисокого класу точності (2,5; 4,0) наведено на рис. 9.1. Цей ватметр має два роздільні електричні кола — коло струму (звичайно, це тільки обмотка нерухомої котушки W1) і коло напруги, до якого входять рухома обмотка — рамка Wр та опори r1, r2 і r3 що створюють додатковий опір. Цей опір забезпечує при вмиканні цього кола на номінальну напругу, вказану біля одного із затискачів цього кола, певну величину струму (номінального для кола напруги). Зазначимо, що кола напруги в електродинамічних ватметрах розраховано на відносно великі (для подібних кіл) струми (наприклад, 30 мА чи ще більший). Це зумовлене тим, що струмова обмотка у таких ватметрів хоч і створює значну магніторушійну силу, але нездатна створити значної магнітної індукції всереди ні нерухомої котушки. Це пояснюється тим, що в електродинамічних приладах лінії магнітного поля на всій своїй довжині проходять у повітрі, яке створює значний магнітний опір їх проходженню. Через це прийнятну величину обертового моменту, що діє на рухому частину електродинамічного вимірювального механізму, можна одержати лише при значному струмі у рамці приладу.
Резистори r1 r2 і r3, ввімкнуті в коло напруги, разом з опором обмотки-рамки rр мають скласти певну величину опору кола напруги (в даному випадку — 10 000 Ом), яка б при номінальній величині напруги, прикладеної до цього кола, забезпечила протікання номінального струму обмотки-рамки (ЗО мА). Опори r1 r2 і r3 виготовляють із манганінового дроту для одержання малої залежності величини опору кола як від температури довкілля, так і від підвищення температури всіх елементів кола, викликаного проходженням по них електричного струму. Тут манганін є найкращим матеріалом, бо має дуже малий температурний коефіцієнт опору. Досить сказати, що при зміні температури манганінового дроту на 10 °С, його опір зміниться лише десь на 0,03% від своєї початкової величини. У цьому колі все ж є елемент, електричний опір якого значною мірою залежить від коливань температури, — це опір обмотки рамки, намотаної мідним дротом, що при зміні температури на ті ж 10 °С змінює величину опору аж на 4 % порівняно з початковою величиною. Але якщо зважити на те, що опір рамки становить у цьому колі лише невелику частку (десь біля відсотка), вплив зміни величини опору рамки майже невідчутний у загальному опорі кола. Таким чином, у цілому струм в обмотці рамки мачо залежить від температури.
Разом з тим зміна температури повітря навколо приладу й всередині нього впливатиме на пружність спіральних пружин, які створюють момент протидії і підводять струм до обмотки-рамки. Для бронзових пружин зміна їх пружності при зміні температури повітря в середньому становить десь близько 1 % на 10 °С (при підвищенні температури пружини слабнуть і показання приладу збільшуються). Якщо зважити на те, що згідно з державними стандартами додаткова похибка від зміни температури на ±10 °С відносно номінальних 20 °С може досягати величини, що відповідає класові точності (а клас точності стаціонарного ватметра 2,5), то ніяких заходів щодо зменшення цієї додаткової похибки не передбачено. У випадках, коли ватметр має вищий клас точності, наприклад 0,5 чи 0,2, поява такої додаткової похибки неприпустима. Тому у більш точних приладів, наприклад у переносних електродинамічних ватметрах класу 0,2, застосовано досконалішу схему, яку наведено на рис. 9.2. Ця схема більш досконала ще й тим, що в ній ужито заходів для створення можливості застосування приладу як на постійному, так і на змінному струмі. Крім того, в цьому приладі передбачено можливість працювати на одній з двох номінальних напруг (150 чи 300 В) і на одному з двох номінальних струмів (2,5 або 5 А). Наявність конденсатора С, паралельного резисторові ги дає можливість налаштувати коло рамки на безреак-тивність, тобто практично компенсувати індуктивність рамки Lр ємністю С. Це буде можливо, якщо Lр ~ Сг\ , При такій компенсації опір кола між точками о і б не матиме реактивної складової, тобто буде практично активним. Це можливо не тільки при величині частоти 50 Гц, але й у значному діапазоні зміни частот, хоч до 500... 1000 Гц, поки величина 4л2/2Сr1 буде незначною порівняно з одиницею (тут/— частота напруги).Налаштовування кола рамки на безреактивність дає змогу при вмиканні послідовно з рамкою додаткових активних опорів різної величини виготовити ватметр на яку завгодно номінальну напругу або на декілька номінальних напруг. Таке налаштовування дає можливість уникнути кутової похибки, яка при неповній компенсації індуктивності рамки особливо проявляється при вимірюваннях у електричних колах з малим коефіцієнтом потужності та при роботі на підвищених частотах.
При виробництві ватметрів високих класів точності (класи 0,1; 0,2; 0,5) наявність такої компенсації дає змогу градуювати ці прилади на постійному струмі, використовуючи особливо точні потенціометричні установки, і бути певним того, що ці прилади будуть здатні працювати як на постійному, так і на змінному струмі. Крім того, наявність скомпенсованої індуктивності обмотки-рамки виключає появу похибки від взаємоіндуктивності, яку може створити ЕРС взаємоіндукції, що наводиться у рамці при проходженні крізь неї змінного магнітного потоку, створеного струмом, що протікає по обмотках нерухомих котушок. Дійсно, рамка, що перебуває у змінному магнітному полі нерухомих котушок, є, по суті, вторинною обмоткою повітряного трансформатора, де первинна обмотка — це обмотка нерухомих котушок. За наявності опору r2 у електричному колі, створеному рамкою і резисторами r1 і r2, виникає електричний струм. Якщо ЕРС взаємоіндуктивності має кут зсуву відносно магнітного потоку, що її викликав, 90° (що завжди буває у повітряних трансформаторів), і електричне коло, в якому циркулює струм від ЕРС взаємоіндуктивності iв, — безреактивне (тобто чисто активне), то цей струм при взаємодії з магнітним потоком нерухомих котушок не створює ніякого обертового моменту. Якщо ж індуктивність рамки не скомпенсовано, то струм від ЕРС взаємоіндуктивності буде зсунуто відносно магнітного потоку не на 90°, тоді з'явиться якийсь, хоч і малий, обертовий момент, що створюватиме похибку. Крім електродинамічних ватметрів, для вимірювання потужності використовують також і феродинамічні. У вимірювальних механізмів цих ватметрів нерухома котушка має феромагнітний магнітопровід, зроблений з електротехнічної сталі, пермалою чи пресованого феромагнітного порошку з ізоляційним заповнювачем. Цей магнітопровід має розрив, куди введено циліндричний центральний магнітопровід, навколо якого у вузькому повітряному проміжку переміщуються дві протилежні сторони рухомої обмотки-рамки, крізь яку проходить струм паралельного кола ватметра. Цей струм підводять до обмотки через дві спіральні пружини, якщо рухома частина вимірювального механізму спирається через керни на підп'ятники, чи по розтяжках, якщо рухому частину підвішено на розтяжках. Принципова електрична схема феромагнітного ватметра практично не відрізняється від схеми електродинамічного. Завдяки наявності феромагнітного магнітопроводу з двома невеликими повітряними проміжками величина магнітної індукції у місці, де магнітний потік взаємодіє зі струмом, що проходить по витках котушки-рамки, може бути значно більшою ніж у електродинамічного ватметра. Тому обертовий момент, створюваний рамкою, може бути досить великим навіть за меншої потужності, шо втрачається у вимірювальному механізмі. Це сприяє підвищенню добротності приладу з таким механізмом і його стійкості до стороннього впливу. На феродинамічні прилади незначно впливають вібрації. Завдяки наявності значної індукції у робочому повітряному проміжку сторонні магнітні поля впливають на ці прилади менше, ніж на електродинамічні. Разом з тим при роботі феромагнітних ватметрів на постійному струмі у них з'являється похибка від наявності гістерезису матеріалу магнітопровода. Це видно по варіації показань приладу, тобто різниці показань, одержаних спочатку при збільшенні, а потім при зменшенні струму у вимірювальному колі. При роботі на змінному струмі у цих приладів з'являється значна кутова похибка, зумовлена наявністю втрат у магнітопроводі. Ця похибка може бути настільки великою, що її компенсують збільшенням індуктивності електричного кола рамки шляхом звичайного (не біфілярного) намотування котушок додаткового до рамки опору і навіть закладенням сталевих стрижнів у центральні отвори цих котушок. Феродинамічні ватметри розраховані на невисокі класи точності. В основному їх використовують як стаціонарні прилади зі стрілочними покажчиками класу, що не вище 1,5. Зокрема, ці прилади виготовляють на кути відхилення покажчика аж до 240°. Завдяки наявності у вимірювальних механізмах цих приладів значних обертових моментів на їхній основі виконують реєструючі самописні прилади.
В Україні налагоджено серійний випуск переносного феродинамічного ватметра класу 0,5, здатного вимірювати потужність як на постійному, так і на змінному струмах. Ватметрами вимірюють потужність у колах постійного і однофазного змінного струмів за схемою, що показана на рис. 9.3. Затискачі, що позначені на приладах зірочками, обов'язково з'єднують перемичкою і приєднують до провідника, що йде від мережі. Зауважимо, що ватметр відхилятиметься в належному напрямі й при з'єднанні перемичкою затискачів, не позначених зірочками, але у цьому разі напругу мережі буде прикладено між рамкою і нерухомою котушкою, які розміщені в безпосередній близькості одна від одної. Саме через це за високої напруги (наприклад, 600 В) може статися пошкодження ізоляції (електричний пробій) і ватметр безумовно вийде з ладу. Якщо ж пробою не буде, то у ватметра може виникнути додаткова похибка через електростатичне притягання рамки до нерухомої котушки. У схемі вмикання ватметра, зображеній на рис. 9.3, він буде показувати потужність, споживану опором навантаження Rн (при вимірюваннях на змінному струмі цей опір може бути активно-індуктивний, або активно-ємнісний) та опором обмотки нерухомої котушки ватметра rк. Якщо потужність, споживана цією обмоткою, вносить небажану похибку у вимірювання (а це можна перевірити простим розрахунком: Рк = Рrк, де Рк — потужність, споживана обмоткою котушки; I — струм, що проходить через обмотку; rк — активний опір обмотки), то перемичку можна встановити між затискачем на якому звичайно вказано величину номінального струму ватметра. Але у цьому разі ватметр разом з потужністю, споживаною опором навантаження, вимірюватиме й потужність у колі напруги ватметра (в обмотці його рамки rр та у додатковому резисторі rд). Втім, таке вмикання ватметра в умовах енергетичних підприємств майже ніколи не використовують. Його використовують при дослідженнях, якщо вони виконуються за малих напруг при струмах, близьких до номінального, і малих опорах RH, коли величина вимірюваної потужності відносно невелика. При цьому буде зовсім невеликою і потужність, споживана колом напруги ватметра. При вимірюванні потужності, споживаної пристроями, які здатні при певних умовах виробляти електричну енергію, ватметр змінює напрям руху покажчика і він заходить за нульову позначку. Звичайно, якщо у ватметра немає "від'ємної" ділянки шкали, вимірювання потужності припиняються. Для того, щоб поновити контроль за величиною потужності (тепер вже — генерованої!), у стаціонарних ватметрів досить поміняти місцями кінці провідників, що були під'єднані до затискачів кола струму. При цьому покажчик знову відхилятиметься на шкалу, а прилад буде вимірювати генеровану бувшим споживачем потужність. У переносних ватметрів на такий випадок є перемикач полярності вмикання рамки, положення якого відповідають знакові споживаної потужності. Положення "+" перемикача відповідає виміру споживаної потужності, положення "—" — виміру генерованої споживачем потужності. Зауважимо, що позначення положень цього перемикача "+" і "—" не мають ніякого відношення до полярності постійного струму. Ці позначення відповідають роботі ватметра як на постійному, так і на змінному струмі. Іноді цей перемикач суміщують з перемикачем величини номінальної напруги ватметра. Омметри — це прилади для безпосереднього виміру електричних активних (омічних) опорів. У більшості випадків омметри виконано на основі магнітоелектричного приладу — міліамперметра і вони мають власне джерело живлення — сухий елемент чи суху батарею (напругою 1,5...4,5 В). Щоб забезпечити незалежність показань від зміни величини напруги елемента чи батареї, омметри мають пристрій, шо встановлює нулі при відхиленні напруги джерела від номінального значення. Дві найпростіші схеми омметрів зображено на рис. 12.1. Вони призначені для вимірювань опорів rх, значно більших за величину опору додаткового резистора rд(рис. 12.1, а), та для вимірювань опорів rxсумірних з величиною rд, і до значно менших, ніж величина опору вимірювального механізму rв (рис. 12.1, б). В обох схемах додатковий опір гд, що є у приладі, обмежує величину струму, який проходить через вимірювальний механізм В при замкненому ключі К та дуже малих опорах rх. Якщо напруга батареї Б змінилася (частіш за все зменшилась з часом), то величина струму, що проходить через вимірювальний механізм В, буде недостатньою для того, щоб стрілка приладу досягла останньої позначки шкали, яку позначено як "нуль" для схеми рис. 12.1, а. Тоді за допомогою регульованого магнітного шунта, який є у вимірювальному механізмі В, при замкнутому контакті К збільшують робочий магнітний потік у вимірювальному механізмі так, щоб стрілка досягла нульової позначки. Якщо ж у приладі, схему якого зображено на рис. 12.1, б, напруга батареї Б зменшилась, то при відімкненому опорі rx так само встановлюють стрілку приладу на кінцеву позначку шкали, яку позначено знаком "∞" (нескінченність).
Виготовлення вимірювального магнітоелектричного механізму з магнітним шунтом значно ускладнює його конструкцію. Тому в більшості випадків омметри виконують на основі магнітоелектричного механізму з нерегульованим магнітним шунтом, а змінюючи величину опору регулювальних резисторів, як показано на схемах рис. 12.2, прилад налаштовують на різні напруги джерела живлення. Як і у попередньому випадку, схему рис. 12.2, а призначено для вимірювання величин опорів, сумірних з rд і більших за нього, а схему рис. 12.2, б — для вимірювання опорів, менших за нього і за опір вимірювального механізму. Якщо зменшилась напруга джерела живлення Б, то у схемі рис. 12.2, а, при замкнутому контакті К (чи затискачах, позначених rх, бо контакту А'може й не бути), збільшують величину опору регульованого резистора rр і відхилення стрілки, поки вона не встановиться на позначці "0" (нуль). За таких самих умов, у схемі рис. 12.2, б, при замкнутому контакті К і відімкненому rх зменшують величину опору регульованого резистора rр і збільшують величину показань приладу до встановлення стрілки на останню позначку шкали, позначену як "∞" (нескінченність). Більш досконалими є омметри, виконані на основі магнітоелектричних логометрів, бо їх показання не залежать від зміни, у певних межах, величини напруги джерел живлення. Принципову схему такого омметра, призначеного для вимірювань великих і малих опорів, показано на рис. 12.3. Як відомо, логометри — це прилади, у яких відхилення стрілки залежить від відношення струмів, що проходять по їхніх схрещених рамках. Зі схеми рис. 12.3 видно, що величина струму в першій рамці iр1 пропорційна величині напруги джерела живлення, тому що опір кола цієї рамки — незмінний, бо визначається величинами опору самої рамки Р1 і величиною опору додаткового резистора rд. Щодо струму, який проходить через другу рамку Р2, то він пропорційний тій самій напрузі і обернено пропорційний величині вимірюваного опору rх. Кут відхилення стрілки логометра залежить від частки поділу величини струму iр1 на величину струму ip2, тобто буде пропорційним величині опору rх. Шкали омметрів градуйовані безпосередньо в омах (або кілоомах) і завжди нерівномірні. Тому клас точності цих приладів, що позначений цифрою на їхніх шкалах, відповідає найбільшій допустимій похибці вимірювань опорів у відсотках від довжини робочої частини шкали. Точність вимірювань опорів на кінцевих (або початкових) ділянках шкал цих приладів, де поділки стиснуто між собою, надзвичайно мала. В усякому разі на цих ділянках шкали можуть виникнути похибки вимірювання опору, шо досягають 5... 10 % (а то й більше!) від вимірюваної величини опору.
Крім того, при малих значеннях напруги джерел живлення (а це 1,5...4,5 В) і реальних величинах номінального струму вимірювальних механізмів (а це не менше як 50 мкА), реальні величини опорів, що вимірюються омметрами, невеликі й не перевищують 1...3 МОм (і це у кращому випадку). Це також є об'єктивним недоліком омметрів. У мостових схемах опори вимірюють, порівнюючи величини вимірюваного опору з величиною зразкового опору шляхом порівняння падіння напруг на цих опорах. Схему вимірювального моста постійного струму для вимірювання опорів (моста Вітстона) наведено на рис. 12.5.
При вимірюваннях, що пов'язані з випробуваннями ізоляційних матеріалів, виникає необхідність у вимірюваннях дуже великих опорів, величина яких значно перевищує (часто на декілька порядків) найбільші величини опорів, вимірюваних мостами. Така необхідність виникає, наприклад, при розробках ізоляторів, на яких закріплюють частини ліній електропередач, що перебувають під високою напругою. Слід зазначити, що у більшості випадків немає потреби в скільки-небудь високій точності від таких вимірювань. Рис. 12.7 Схема, що пояснює вплив опору ізоляції проводів на вимірювання опору значної величини
У подібних випадках застосовують посередній вимір опору за допомогою вольтметра і гальванометра, який здатний відчути надзвичайно малі струми, що проходять через ізоляційний матеріал. Але при цьому виникає проблема, а саме: як запобігти впливові на вимірювання побічних струмів, що не проходять через вимірюваний опір, але враховуються вимірювальними приладами. Схему, що пояснює вплив сторонніх струмів на вимірювання опору, показано на рис. 12.7. Величину опору можна визначити простим посереднім способом — розрахунком за показаннями амперметра і вольтметра. Амперметр вимірює струм, що проходить по резистору, опір якого необхідно визначити, а вольтметр — напругу, за якої цей струм було одержано. Можливі схеми для виконання таких вимірювань наве дено на рис. 12.9.
Існує досить простий спосіб визначення величини активного опору будь-якого резистора за допомогою одного вольтметра з відомою величиною власного опору. У переносних вольтметрів величину цього опору завжди показано на шкалі. Якщо вольтметр має декілька границь вимірювання, то величина його опору позначається для кожної з цих границь. Для проведення вимірювань складають схему, яку показано на рис. 12.10.
Величина опору заземлення дуже важлива з міркувань безпеки роботи персоналу як на підприємствах енергетичного профілю, так і на всіх промислових підприємствах, у будівництві та сільському господарстві. Необхідно, щоб величина опору заземлення не була більшою за ту, що передбачена правилами безпеки на кожному підприємстві. Величина цього опору періодично контролюється як енергетичними службами підприємств, так і інспекційними органами. Одним з методів визначення величини опору заземлення є метод амперметра і вольтметра. Схему для визначення опору заземлення таким методом наведено на рис. 12.11.
|
||||||||||||||||||||
|