МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||||
Гамільтонові циклиЗадача про ланцюги
Теорія графів почалася з розв’язування задачі про кенігсберзькі мости (Ейлер, XVIII ст.). Розташування мостів в м. Кенігсберг наведено на рис.8.
Рис. 8.
В місті є 7 мостів {a, b, c, d, e, f, g}, які його розбивають на чотири частини {A, B, C, D}. Необхідно обійти всі мости міста, проходячи по кожному рівно один раз, і повернутись у початкову точку. Граф для цієї задачі наведений на рис.9.
Рис.9.
Загальна постановка задачі є наступною (Ейлер): в яких випадках у скінченному неорієнтованому графі можна знайти такий цикл, у якому кожне ребро графу зустрічалось би рівно один раз. Якщо такий цикл існує, то він називається ейлеревим циклом, а сам граф називається ейлеревим. Твердження. Скінченний граф G(V) є ейлеровим тоді і тільки тоді, коли: 1) G(V) - зв’язний граф; 2) локальні степені всіх його вершин парні. Алгоритм побудови ейлеревого циклу: 1) вибираємо довільну вершину a Î V; 2) будуємо довільний ланцюг P з початком у вершині „a”. Оскільки локальні степені всіх вершин графу є парні, то ланцюг може завершитись тільки в „a” (тобто він є циклом); 3) якщо P(a, a) містить не всі ребра графу G(V), то будуємо граф G1 = G ‑ P(a, a), в якому всі вершини мають теж парний локальний степінь. Оскільки граф G(V) є зв’язним, то серед вершин P(a, a) має знайтись вершина „b”, яка зв’язана ребром хоча б з однією вершиною графу G(V) (інакше граф G був би незв’язним); 4) будуємо з ребер графу G1 ланцюг P’, що починається у вершині „b” і може закінчуватись тільки у „b”; з ланцюгів P і P’ будуємо новий цикл: P1(a, a) = P(a, b) È P’(b, b) È P(b, a); 5) якщо P1(a, a) не містить всіх ребер графу G(V), то, за аналогією з кроком 3) будуємо граф G2 = G – P1(a, a) і т.д. З огляду на скінченність графу, цей процес зупинитися, коли всі ребра графу G(V) будуть вичерпані. Узагальнюючи задачу Ейлера можна шукати найменшу кількість ланцюгів (не циклів!) P1, які не перетинаються по ребрах і покривають увесь зв’язний граф G(V). Твердження. Нехай G(V) - скінченний зв’язний граф з k вершинами непарного локального степеня. Тоді мінімальна кількість ланцюгів, які не перетинаються по ребрах і покривають граф G, дорівнює k / 2. Алгоритм побудови ланцюгів Pi. 1) з’єднуємо довільно чином пари вершин з непарним локальним степенем (для цього необхідно k / 2 ребер). При цьому утворюється граф G1, всі вершини якого мають парний степінь; 2) граф G1 є ейлеровим і в ньому існує ейлерів цикл S; 3) після відкидання з циклу S доданих на кроці 1) k / 2 ребер, отримуємо k / 2 ланцюгів, які покривають весь граф G. Приклад
Рис. 10.
Степені вершин графу:
Таким чином, k = 4. З’єднаємо ребрами вершини (c, d) та (f, h) (на рис.10 ці ребра позначені штриховими лініями). Поетапно побудуємо для утвореного графу цикл Ейлера: а) P1 = (І, ІІІ, ІІ); б) P2 = (І, ІХ, VI, IV, III, II); в) P3 = (І, IX, XIII, XII, XI, VI, IV, III, II); г) P4 = (I, IX, XIV, X, VIII, XIII, XII, XI, VI, IV, III, II); д) P5 = (I, IX, XIV, X, VIII, XIII, XII, XI, VI, VII, XV, V, IV, III, II). Віднімаючи додані раніше ребра XIV і XV, отримаємо три ланцюги: 1) (І, Х); 2) (Х, VIII, XIII, XII, XI, VI, VII); 3) (V, IV, III, II). Зауважимо, що перший і третій ланцюги мають спільний кінець – вершину „а”. „Склеюючи” ці ланцюги, отримаємо остаточно: 1) (V, IV, III, II, I, IX); 2) (X, VIII, XIII, XII, XI, VI, VII). Для орієнтованих графів має місце Твердження. Нехай G(V) - орієнтований зв’язний граф. Граф G містить ейлерів цикл тоді і тільки тоді, коли у кожну вершину v входять стільки ж ребер, скільки і виходить: r(v) = r*(v). Якщо в неорієнтованому графі кожне неорієнтоване ребро замінити двома орієнтованими і протилежно направленими, то мають місце умови попереднього твердження і тому правильне таке Твердження. У скінченному зв’язному неорієнтованому графі завжди можна побудувати орієнтований цикл, який проходить через кожне ребро по одному разу в кожному з двох напрямків.
Визначення. Гамільтонів цикл – це цикл, який проходить по кожній вершині графа і рівно один раз. До знаходження гамільтонового циклу приводить, наприклад, задача комівояжера: деякий район містить пеану кількість міст, які повинен обійти комівояжер. Відомі відстані між всіма містами. Необхідно знайти найкоротший шлях, який проходить через всі міста і повертається в початковий пункт. Незважаючи на подібність у формулюванні для ейлерових і гамільтонових циклів, відповідні теорії мають мало спільного. Критерій існування ейлеревих циклів був встановлений достатньо просто; для гамільтонових циклів ніякого загального правила невідомо. Більше того, для конкретних графів іноді тяжко встановити, чи існує взагалі такий цикл. Тому обмежимось одним критерієм. Твердження. (Дірак). Якщо в графі G(V) з n вершинами для довільної вершини v Î V : r(v) ³ n / 2, то в графі існує гамільтонів цикл.
На закінчення зауважимо, що є різні задачі пошуку маршрутів у графі: - з’ясування чи граф є ейлеревим та знаходження відповідного ейлеревого циклу - знаходження найменшої кількості ланцюгів, які не мають спільних ребер та покривають увесь граф - з’ясування чи граф є гамільтоновим - знаходження маршрут, що зв’язує дві довільні задані вершини - знайти найкоротший шлях з однієї заданої вершини в іншу задану вершину (зокрема для зважених графів) Читайте також:
|
||||||||||||||||||||||||||
|