МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
The Connection Between IDEF5 and Other MethodsAs Mr. John Zachman in his seminal work on information systems architecture observed, “... there is not an architecture, but a set of architectural representations. One is not right and another wrong. The architectures are different. They are additive, complementary. There are reasons for electing to expend the resources for developing each architectural representation. And, there are risks associated with not developing any one of the architectural representations.” [Zachman 87] Consistent, reliable creation of correct architectural representations, whether artificial approximations of a system (models) or purely descriptive representations, requires the use of a guiding method. These observations underscore the need for many “architectural representations,” and correspondingly, many methods. Typically, methods, and their associated architectural representations, focus on a limited set of system characteristics and explicitly ignore those that are not directly pertinent to the task at hand. Thus, IDEFØ provides a compact, yet surprisingly powerful, conceptual universe for modeling business activities; for all its power, however, it would be highly inconvenient, if possible at all, to use it to design a relational database; IDEF1X is the method that is optimized for that task. Similarly, IDEFØ explicitly excludes temporal information, and limits what can be represented about temporal relations that hold between business activities, as well as the objects involved in the internal structure of those activities. These exclusions are what give IDEFØ its power in modeling business activities. For in a method design as in a programming language design, what distinguishes a well designed effective method is what is left out more so than what is left in. IDEF3, on the other hand, includes explicit representations of processes, time intervals, and temporal relations and, hence, is ideally suited for expressing information about timing and sequencing; it also includes the capacity to express arbitrary information about the individuals participating in those processes. It lacks, however, the specialized representations of IDEFØ and, therefore, information that IDEFØ expresses with great ease and simplicity is, by comparison, expressed only awkwardly in IDEF3. The connection between these methods and IDEF5 is rather straightforward. Of the methods just mentioned, the IDEF5 schematic language is perhaps closest to IDEF1 and IDEF1X. However, the connection between IDEF1/1X and IDEF5 is analogous to that between IDEFØ and IDEF3. The information in an IDEF1 or IDEF1X model could in principle be expressed in the IDEF5 elaboration language. However, because it does not contain the well-designed, specialized representations of IDEF1/1X, it would be exceedingly cumbersome in IDEF5 to design a relational database, for example. But the expressive power of IDEF1/1X soon reaches its limits and, hence, could not possibly do all that is expected of a general ontology language. (For a more detailed comparison of IDEF1/1X and IDEF5, see Subsection 2.4.) In a sense, the designs of both IDEF3 and IDEF5 break the traditional mold according to which methods are purposely designed with limited expressive power. The elaboration languages of both methods are full first-order languages (and more besides) and, hence, are capable of expressing most any information that might need to be recorded in a given domain. This break with tradition not only reflects the need for greater expressive power, but also reflects the development and increased utilization of more intelligent tools and automated, model-driven systems in business and engineering. Intelligent tools and model-driven systems generally must manipulate much richer forms of information than can be expressed in a traditional method. This motivates the design of richer methods that have the capacity to represent and organize such information, methods that are not restricted to pencil and paper form and, hence, which truly augment the ability of human agents to create, manage, and reuse a richer store of knowledge. For the reasons above, these newer methods will not make the older, more restricted methods obsolete; the ability to filter and structure information relative to certain well-defined tasks will still be very useful. At the same time, the greater demands of intelligent tools and model-driven systems will require more. The broader vision that guides these newer methods is one in which all system definition information is stored in a global (albeit perhaps virtual) repository of information, with modeling methodologies providing different views that filter the information in various useful ways relative to the task at hand. When the task at hand is the general nature of the domain in which the system operates, the ontology capture method will provide the appropriate perspective. The next tier in the vision is for all organizations — within the bounds of their proprietary interests — to have ontologies of their various component systems available for sharing and reuse. IDEF5 is being developed in the belief that it can contribute in a vital way to the realization of this vision of global knowledge sharing.
|
||||||||
|