МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Задачі до розділу 5.1Задача 5.1.1
Ймовірність появи події в кожному з 100 незалежних випробуваннях однакова і дорівнює 0,8. Знайти ймовірність того, що подія з’явиться не менше 75 раз і не більше 90 раз.
Рішення
За умовою задачі: Оскільки п досить велике, то за інтегральною теоремою Лапласа
,
.
Враховуючи, що функція Лапласа є непарною, тобто Ф(-х)=-Ф(х), маємо
Тоді за формулою (5.2) шукана ймовірність дорівнює
Задача 5.1.2
У страховій компанії 10 тис. клієнтів, які застрахували своє майно. Страховий внесок складає 2000 грн., ймовірність нещасного випадку р=0,005, страхова виплата клієнту у нещасному випадку складає 200 тис. грн. Визначити розмір прибутку страхової компанії з ймовірністю 0,95.
Рішення.
Нехай у – страхові виплати при нещасних випадках. Тоді прибуток компанії є різницею між сумою страхових внесків і сумою страхових виплат, тобто .
Задача полягає у знаходженні такого числа N , для якого ймовірність нещасного випадку не перевищувала 1-р, іншими словами повинна виконуватися умова .
Визначимо значення аргументу функції Ф(х) при
,
За таблицею функції Лапласа знаходимо, що тому що х>5. За формулою (5.2) ,
За таблицею функції Лапласа, при значенні знаходимо . Тоді
У цьому випадку можна вважати, що з ймовірністю 0,95 страховій компанії гарантується прибуток
.
Задача 5.1.3
Обчислити ймовірність появи події А від 50 до 70 раз в 95 випробуваннях, якщо ймовірність появи події у кожному випробуванні однакова і дорівнює 0,7.
Задача 5.1.4
Обчислити ймовірність появи події А від 60 до 65 рази в 75 випробуваннях, якщо ймовірність появи події у кожному випробуванні однакова і дорівнює 0,8.
Задача 5.1.5
Ймовірність появи події дорівнює 0,7 у кожному з 2100 незалежних випробувань. Знайти ймовірність появи події: а) не менше 1470 раз; б) не менше 1470 і не більше 1500 раз; в) не більше 1469 раз.
Задача 5.1.6
Банк надає кредит населенню і має 1000 клієнтів. Кожному з клієнтів надається кредит 50000 грн. при умові повернення 110% від цієї суми. Ймовірність неповернення кредиту кожним з клієнтів у середньому складає 0,01. Який прибуток гарантується банку з ймовірністю 0,9?
|
||||||||
|