Нехай виконується п незалежних випробувань в кожному з яких ймовірність появи події А дорівнює р. Для визначення ймовірності появи події рівно k раз в цих випробуваннях використовують формулу Бернуллі. Якщо ж п велике, тоді для визначення ймовірності появи використовують локальну теорему Лапласа. Але ця формула непридатна, якщо ймовірність появи події мала (). В цих випадках використовують формулу Пуассона.
Вважаємо, що добуток зберігає постійне значення, тобто . Для доведення формули Пуассона використаємо формулу Бернуллі
Оскільки , тоді
Значить формула Пуассона має вигляд:
. (5.3)
Приклад:
Завод відправив на базу 10000 якісних виробів. Ймовірність того, що на шляху до бази вироб втратить якість дорівнює 0,0001. Знайти ймовірність того, що на базу прийде 5 неякісних виробів.
Рішення.
За умовою задачі
Тоді
Пуассон Сімеон Дені(21.06.1781 – 25.04.1840 рр.) – французький механік, фізик і математик. Пуассон написав більше 300 праць, значна кількість яких відіграла значну роль у становленні сучасної науки. Він покращив способи застосування теорії ймовірностей взагалі і до питань статистики зокрема, довів теорему, яка стосується закону великих чисел (закон Пуассона), вперше ввівши термін „закон великих чисел”.