Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Площина і пряма у просторі

Будь-яке рівняння першого степеня відносно координат точки простору відображає площину. Коефіцієнти при змінних А, В, С є компонентами вектора, перпендикулярного до площини.

Кут між двома площинами і визначається за формулою:

.

Умовою їх паралельності є: , а перпендикулярності — . Відстань від точки до площини можна знайти за формулою: .

Пряма у просторі може бути визначена як перетин двох
площин:

або канонічним рівнянням:

,

де — напрямний вектор прямої, — точка, що лежить на прямій.

Пряму у просторі можна задати також параметричним рівнянням:

де t — параметр, або рівнянням прямої, що проходить через дві задані точки і :

.

Звичайно, всі рівняння відповідають прямій у просторі і між ними існує певний зв’язок.

Площина і пряма у просторі можуть перетинатися під деяким кутом a, який визначається за формулою:

.

У разі виконання умови: пряма і площина па-
ралельні, а якщо — перпендикулярні. Умовою того, що пряма лежить на площині, є виконання співвідношень:

Приклад 1.Скласти рівняння площини, що проходитьчерез вісь ОZ і утворює з площиною кут 60°, і знаходження її відстані до точки .

Рівняння шуканої площини можна записати у вигляді , тому що вона проходить через вісь OZ. Використаємо другу умову задачі: , з якої одержимо рівняння: або . Остаточно маємо, що умовам задачі задовольняють дві площини: і . Точка А лежить на першій площині, тому що , а відстань її до другої площини .

Приклад 2.Знайти напрямний вектор прямої

і кути, які вона утворює з осями системи координат.

Вектори і перпендикулярні до відповідних площин, що задають рівняння прямої, тому напрямний вектор прямої розташований перпендикулярно до кожного з векторів . Згідно з означенням векторного добутку векторів

Тобто: або . Кути з осями знайдемо за формулами: ; .

Приклад 3.Показати, що прямі

і

перетинаються, і написати рівняння площини, в якій вони роз-
ташовані.

Дві прямі будуть лежати на одній площині, коли їх напрямні вектори і і вектор будуть компланарними. Точка лежить на першій прямій, а — на другій. Век­тор . Напрямний вектор
. . Отже, прямі лежать на одній площині. Для запису рівняння цієї площини знайдемо вектор . Точка лежить на цій площині. Отже, маємо: або остаточно: .

Література : В.П.Дубовик, І.І.Юрик „Вища математика”, К.,”АСК”,2001,

стор. 90 – 96.

 

Тема 9

Гіпербола. Парабола. Властивості

 

Мета заняття Вивчити означення, виведення канонічного рівняння та властивості кривих: гіпербола та парабола.

Розвивати логічне мислення.

Студенти повинні знати: означення гіперболи, її рівняння, властивості; означення параболи, її рівняння, властивості.

Студенти повинні вміти: розв'язувати задачі, складати різні рівняня гіперболи; розв'язувати задачі, складати різні рівняння параболи; будувати ці криві в системі координат залежно від їх рівняння.

Основні питання теми

1.Означення гіперболи;

2.Розташування в системі координат;

3.Виведення канонічного рівняння;

4.Властивості: осі, вершини, фокуси, асимптоти, ексцентриситет, загальне рівняння, спряжені гіперболи, рівнобічна гіпербола;

5.Означення параболи;

6.Виведення канонічного рівняння параболи;

7.Властивості: вершина, фокус, директриса, вісь симетрії;

8.Розташування параболи в системі координат залежно від її рівняння;

2.5. Криві другого порядку

До кривих другого порядку належать: коло, еліпс, гіпербола, парабола. У загальному випадку їм відповідає рівняння:

.

Шляхом перетворення системи координат із загального рівняння можна одержати канонічні рівняння кривих другого порядку:

кола: , де — координати центра кола,
а — радіус кола;

еліпса: , де — півосі еліпса;

гіперболи: , де а — дійсна, b — уявна півосі гіперболи;

параболи: , де р — параметр параболи.




Переглядів: 4352

<== попередня сторінка | наступна сторінка ==>
Дві площини збігаються, якщо виконується рівність | Свої набуті знання ви можете перевірити в наступному тесті

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.021 сек.