Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Операції над множинами

Об’єднання і перетин множин

Розглянуті нижче операції над множинами мають велике значення для розв’язання багатьох задач дискретної математики, особливо тих, що пов’язанні із синтезом дискретних автоматів.

Означення. Об’єднанняммножин А і В називається множина, що складається з усіх тих і лише тих елементів, які належать хоча б одній з множин А або В. Позначається ={x|x A або х В} (називається сумоюабо об’єднанням).

Таким чином, за наведеним означенням тоді і лише тоді, коли х є елементом хоча б однієї з множин А або В. Наприклад, {1,2,3} {1,3,4}={1,2,3,4}.

Об’єднання множини А з порожньою множиною буде давати ту ж саму множину А: .

Аналогічно визначається об’єднання довільної (у тому числі й нескінченної) системи множин. Якщо система містить невелику кількість множин, то їх об’єднання описується явно, наприклад: .

У випадку, якщо всі множини пронумеровані індексами й належать до системи множин , то їх відображають у вигляді , або , де S – нескінченна система, і її множини пронумеровані підряд натуральними числами.

Для об’єднання множин справедливі комутативнийі асоціативнийзакони:

1. Комутативний закон

. (1.2)

 

2. Асоціативний закон

. (1.3)

 

Справедливість цих законів випливає з того, що ліва і права частини наведених рівностей складаються з одних і тих самих елементів ,а порядок їх об’єднання для множин не має значення.

Означення.Перетином (добутком, перерізом) множин А і В називається множина, що складається з усіх тих і тільки тих елементів, які належать як до множини А, так і до множини В. Позначається . До цієї множини належать лише спільні елементи множин А і В.

Формальне означення:

={x|x A і х В}. (1.4)

 

Наприклад, {1,2,3} {1,3,4}={1,3}.

Для перетину і об’єднання множин властиві таківключення:

 

, (1.5)

. (1.6)

 

Вважається, що дві множини А і В не перетинаються, якщо , і перетинаються, якщо .

Перетин множин має комутативну

 

(1.7)

 

і асоціативну властивість

 

. (1.8)

 

Для порожньої множини має місце також співвідношення , яке твердить, що перетин будь-якої множини з порожньою множиною дає ту саму порожню множину.

Декартів добуток

Означення.Декартів добуток (прямий добуток) двох множин А і В— це множина усіх можливих впорядкованих пар, у яких перша компонента належить множині А, а друга — множині В.

Декартів добуток двох множин А і В позначається як :

 

(1.9)

Наприклад, якщо множина А складається з 13 елементів { A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2 }, а множина В – з 4 елементів {червоний, чорний, блакитний, зелений}, то декартів добуток цих множин є 52-елементною множиною (оскільки 13×4=52) {(A, червоний), (K, червоний), ... , (2, червоний), (A, чорний), ... , (3, зелений), (2, зелений)}.

Різниця множин

Означення.Різницеюмножин А і В або відносним доповненням множини В до А називається множина, що складається з усіх тих і лише тих елементів, які належать А і не належать до В. Визначається лише для двох множин.

Наприклад, різниця між натуральними і парними числами являє собою множину всіх непарних натуральних чисел.

Різниця множин А і В позначається як A\B (A/B), або А-В, що відповідає умові {х|х A і х В}, яка визначає ті елементи множини А, що не є елементами множини В. Саму операцію знаходження різниці двох множин називають відніманням множин.

Нехай А={1,3,4,5}, а B={1,2,3}. Тоді отримана при відніманні множини В від А різниця А–В={4,5}.

Множина називається симетричноюрізницею.

Якщо А={1,3,4,5}, а В={1,2,3}, то симетрична різниця А+В={2,4,5}.

Теорема. .

 





Переглядів: 4031

<== попередня сторінка | наступна сторінка ==>
Множини та операції над ними | Універсальна множина

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.015 сек.