Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Електробезпека

Природними джерелами електромагнітних полів та випромінювань є передусім: атмосферна електрика, радіовипромінювання сонця та галактик, електричне та магнітне поле Землі. Всі промислові та побутові електричні та радіоустановки є джерелами штучних полів та випромінювань, але різної інтенсивності. Перерахуємо найбільш суттєві джерела цих полів.

Захист від випромінювань

Захист часом полягає в тому, щоб обмежити час t перебування в умовах опромінення та не допустити перевищення допустимої дози.

Захист відстанню грунтується на наступних фізичних засадах. Випромі­ню­вання точкового або локалізованого джерела поширюється у всі сторони рівно­мі­р­но, тобто є ізотропним. Звідси випливає, що інтенсивність випромінювання зменшується із збільшенням відстані R до джерела за законом обернених квадратів.

Принцип екранування або поглинання грунтується на використанні процесів взаємодії фотонів із речовиною. Якщо задані тривалість роботи, активність джерела та відстань до нього, а потужність дози Р0 на робочому місці оператора виявляється вище допустимої РД, немає іншого шляху, крім того, як зменшити значення Р0 у необхідне число разів: n = Р0Д, помістивши між джерелом випромінювання та оператором захист із речовини, що поглинає радіацію.

Слід відзначити, що організм беззахисний у полі випромінювання. Існують механізми пострадіаційного відновлення живих структур. Тому до певних меж опромінення не викликає шкідливих змін у біологічних тканинах. Якщо допустимі границі перевищені, то необхідна підтримка організму (посилене харчування, вітаміни, фізична культура, сауна тощо). При змінах у кровотворенні застосовують переливання крові. При дозах, що загрожують життю (600 – 1000 бер) використовують пересадку кісткового мозку. При внутрішньому переопроміненні для поглинання або зв’язування радіонуклідів у сполуки, що перешкоджають їх відкладанню в органах людини, вводять сорбенти або речовини, які утворюють комплекси.

До технічних засобів захисту від іонізуючих випромінювань відносяться екрани різних конструкцій. У якості ЗІЗ застосовують халати, комбінезони, плівковий одяг, рукавиці, пневматичні костюми, респіратори, протигази. Для захисту очей застосовуються окуляри. Весь персонал повинен мати індивідуальні дозиметри.

Електромагнитні поля (ЕМП)

Електростатичні поля виникають при роботі з матеріалами та виробами, що легко електризуються, а також при експлуатації високовольтних установок постійного струму. Джерелами постійних та магнітних полів є: електромагніти, соленоїди, магнітопроводи в електричних машинах та апаратах, литі та металокерамічні магніти, використовувані в радіотехніці.

Джерелами електричних полів промислової частоти (50 Гц) є: лінії електропередач, відкриті розподільні пристрої, що вмикають комутаційні апарати, пристрої захисту та автоматики, вимірювальні прилади, збірні, з’єднувальні шини, допоміжні пристрої, а також всі високовольтні установки промислової частоти. Магнітні поля промислової частоти виникають навколо будь-яких електроустановок і проводів струму. Чим більший струм, тим вища інтенсивність магнітного поля.

Джерелами електромагнітних випромінювань радіочастот є поту­жні радіос­танції, антени, генератори надвисоких частот, установки індукційного та діалект­ри­чного нагрівання, радари, вимірювальні та контролюючі прилади, дослідницькі установки, високочастотні прилади та пристрої в медицині та в побуті.

Джерелом електростатичного поля та електромагнітних випромі­ню­вань у широкому діапазоні частот (над- та інфранизькочастотному, радіочастотному, інфрачервоному, видимому, ультрафіолетовому, рентгенівському) є персональні електронно-обчислювальні машини (ПЕОМ) та відео-дисплейні термінали (ВДТ) на електронно-променевих трубках, використовувані як в промисловості, наукових дослідженнях, так і в побуті. Головну небезпеку для користувачів становить електромагнітне випромінювання монітора в діапазоні 20 Гц – 30 мГц та статичний електричний заряд на екрані.

Джерелом підвищеної небезпеки у побуті з точки зору електромагнітних випромінювань є також мікрохвильові печі, телевізори будь-яких модифікацій, радіотелефони. У теперішній час визнаються джерелами ризику у зв’язку з остан­ні­ми даними про дію магнітних полів промислової

 

частоти: електроплити з елект­ро­проводкою, електричні грилі, праски, холодильники (коли працює компресор).

Вплив електромагнітного поля на організм людини.Механізм впливу ЕМП на біологічні об’єкти дуже складний і недостатньо вивчений. Але в спрощеному вигляді цей вплив можна уявити наступним чином: у електричному полі молекули, з яких складається тіло людини, поляризуються і орієнтуються за напрямком поля: у рідинах, зокрема в крові, під дією електрики з’ÿвляються іони і, як наслідок, струми. Однак іонні струми будуть протікати у тканині тільки по міжклітинній рідині, тому що за постійного поля мембрани клітини, будучи добрими ізоляторами, надійно ізолюють внутрішньоклітинне середовище.

При підвищенні частоти зовнішнього ЕМП електричні властивості живих тканин змінюються: вони втрачають властивості діелектриків і набувають властивостей провідників, до того ж ця зміна відбувається нерівномірно. З подальшим зростанням частоти індукція іонних струмів поступово заміщується поляризацією молекул.

Теплова енергія, що виникла у тканинах людини, збільшує загальне тепловиділення тіла. Якщо механізм терморегуляції тіла не здатний розсіювати надлишкове тепло, може статися підвищення температури тіла. Це відбувається, починаючи з інтенсивності поля, що дорівнює 100 Вт/м2, яка називається тепловим порогом. Органи та тканини людини, які мають слабко виражену терморегуляцію, більш чутливі до опромінення (мозок, очі, нирки, кишечник, сім’яники). Перегрівання тканин та органів призводить до їх захворювання. Підвищення температури тіла на 1 0С та вище недопустиме через можливі необоротні зміни.

Негативний вплив ЕМП викликає оборотні, а також необоротні зміни в організмі: гальмування рефлексів, зниження кров’яного тиску (гіпотонія), упові­ль­нення скорочень серця (брадикардія), зміну складу крові у бік збільшення числа лейкоцитів та зменшення еритроцитів, помутніння кришталика ока (катаракта).

Суб’єктивні критерії негативного впливу ЕМП – головні болі, підвищена втомлюваність, дратівливість, порушення сну, задишка, погіршення зору, підви­щення температури тіла.

Разом із біологічною дією, електростатичне поле та електричне поле промислової частоти обумовлюють виникнення розрядів між людиною та іншим об’єктом, відмінний від людини потенціал. Зареєстровані при цьому струми не являють собою небезпеки, але можуть викликати неприємні відчуття. У будь-якому випадку такому впливу можна запобігти шляхом простого заземлення об’єктів, що мають великі габарити (автобус, дах дерев’яного будинку тощо), і видовжених об’єктів (трубопровід, дротяна загорожа тощо), тому що на них через велику ємність накопичується достатній заряд і суттєвий потенціал, які можуть обумовити помітний розрядний струм.

Великий практичний інтерес становлять дані досліджень впливу магнітного поля промислової частоти. Вчені Швеції виявили у дітей до 15 років, які мешкають навколо ЛЕП, що вони хворіють на лейкемію у 2,7 рази частіше, ніж у контрольній групі, віддаленій від ЛЕП.

Існує велика кількість гіпотез, які пояснюють біологічну дію магнітних полів. Загалом, вони зводяться до індукції струмів в живих тканинах та до безносе­реднього впливу полів на клітинному рівні.

Відносно нешкідливим для людини на протязі тривалого часу пропонується визнати МП, що мають порядок геомагнітного поля та його аномалій, тобто напруженості МП не більше 0,15–0,2 кА/м. За більш високих напруженостей МП починає проявлятися реакція на рівні організму. Характерною рисою цих реакцій є тривала затримка відносно початку дії МП, а також яскраво виражений кумулятивний ефект за тривалої дії МП. Зокрема, експерименти, проведені на людях, показали, що людина починає відчувати МП, якщо воно діє не менше 3–7 с. Це відчуття зберігається деякий час (близько 10 с.) і після закінчення дії МП.

Норми і рекомендації для захисту від ЕМП при експлуатації комп’ютерів.У теперішній час рядом країн розроблено документи, які регламентують правила користування дисплеями. Найбільш відомі шведські документи MPR II 1990:8 (Шведського національного комітету з захисту від випромінювань) та більш жорсткий стандарт ТСО 95 (Шведської конференції професійних союзів). Ці норми застосовуються у всіх країнах Скандинавії і рекомендовані до розповсюдження в країнах ЕС.

 

Вимоги норм MPR до рівня електромагнітних випромінювань у 20 разів жорсткіші, ніж вимоги ГОСТ, що обмежують рівень випромінювання радіочастот, вимоги ТСО 95 жорсткіші у 50 разів.

Нижче приводяться для порівняння з ГОСТ 12.1.006-84 «Електромагнітні поля радіочастот» дані шведського стандарту MPR ІІ1990:8. В діапазоні частот 5 Гц-2 кГц напруженість електричного поля Е не повинна перевищувати 25 В/м, а магнітна індукція - 250 нТл. Це рівнозначно напруженості магнітного поля Н = 0,2 А/м. В діапазоні частот 2-400 кГц - Е 2,2 В/м, а Н 0,02 А/м. Такі самі значення прийняті тепер і в Росії згідно СанПин 2.2.2.542-96 для відео-дисплейних терміналів на відстані 50 см від них. Цими нормами рекомендується користуватися і в Україні.

У всіх випадках для захисту від випромінювань очі повинні бути розташовані на відстані витягнутої руки до монітора (не ближче 70 см).

Більш пізні монітори з маркуванням Low Radiation практично задовольняють вимоги шведських стандартів. Комп’ютери з рідкокристалічним екраном не наводять статичної електрики і не мають джерел відносно потужного електромагнітного випромінювання. При використанні блока живлення виникає деяке перевищення рівня на промисловій частоті, тому рекомендується працювати від акумулятора.

Найбільш ефективна система захисту від випромінювань реалізується через створення додаткового металічного внутрішнього корпусу, що замикається на вбудований закритий екран. За такої конструкції вдається зменшити електричне та електростатичне поле до фонових значень вже на відстані 5–7 см від корпуса, а за умови компенсації магнітного поля така конструкція забезпечує максимально можливу у наш час безпеку. Такі монітори коштують на 200-400 доларів дорожче звичайних.

Методи та засоби захисту від впливу ЕМП.При невідповідності вимогам норм у залежності від робочого діапазону частот, характеру виконуваних робіт, рівня опромінення і необхідної ефективності захисту застосовують наступні способи та засоби захисту або їх комбінації: захист часом та відстанню; зменшення параметрів випромінювання безпосередньо в самому джерелі випромі­нювання; екранування джерела випромінювання; екранування робочого місця; раціональне розташування установок в робочому приміщенні; встанов­лення раціональних режимів експлуатації установок та роботи обслуговуючого персоналу; застосування засобів попереджувальної сигналізації (світлова, звукова тощо); виділення зон випромінювання; застосування засобів індивідуального захисту.

Захист часом передбачає обмеження часу перебування людини в робочій зоні, якщо інтенсивність опромінення перевищує норми, встановлені за умови опромінення на протязі зміни, і застосовується, коли немає можливості зменшити інтенсивність опромінення до допустимих значень і тільки для випромінювань в діапазоні 300 МГц - 300 ГГц, а також для електростатичного та електричного поля частотою 50 Гц. Допустимий час перебування залежить від інтенсивності опромінення.

Захист відстанню застосовується коли неможливо послабити інтенсивність опромінення іншими заходами, у тому числі й скороченням часу перебування людини в небезпечній зоні. В цьому випадку збільшують відстань між джерелом випромінювання і обслуговуючим персоналом. Цей вид захисту грунтується на швидкому зменшенні інтенсивності поля з відстанню.

Електромагнітна енергія, випромінювана окремими елементами електротер­мічних установок та радіотехнічної апаратури, при відсутності екранів (настроювання, регулювання, випробування) поширюється в приміщенні, відбивається від стін та перекриттів, частково проходить крізь них і трохи розсіюється в них. В результаті утворення стоячих хвиль в приміщенні можуть створюватися зони з підвищеною густиною ЕМВ. Тому роботи рекомендується проводити в кутових приміщеннях першого та останнього поверхів будинків.

 

Для захисту персоналу від опромінень потужними джерелами ЕМВ поза приміщеннями необхідно раціонально планувати територію радіоцентру, виносити служби за межі антенного поля, встановлювати безпечні маршрути руху людей, екранувати окремі будівлі та ділянки території.

 

Зони опромінення виділяються на основі інструментальних вимірювань інтенсивності опромінення для кожного конкретного випадку розташування апаратури. Установки огороджують або границю зони позначають яскравою фарбою на підлозі приміщення, передбачаються сигнальні кольори та знаки безпеки відповідно до ГОСТ12.3.026-76.

Для захисту від електричних полів повітряних ліній електропередач необхідно вибрати оптимальні геометричні параметри лінії (збільшення висоти підвісу фазних проводів ЛЕП, зменшення відстані між ними тощо). Це зменшить напруженість поля поблизу ЛЕП в 1,6–1,8 рази.

Для захисту очей від ЕМВ призначені захисні окуляри з металізованими скельцями типу ЗП5-80 (ГОСТ 12.4.013-75). Поверхня одношарових скелець повернута до ока, покрита безколірною прозорою плівкою двоокису олова, яка дає ослаблення електромагнітної енергії до 30 дБ при пропусканні світла не менше 75 %.

Для контролю рівнів ЕМП застосовують різні вимірювальні прилади у залежності від діапазону частот. Вимірювання проводять в зоні перебування персоналу від рівня підлоги до висоти 2 м через кожні 0,5 м.

Захист від лазерного випромінювання.Лазерне випромінювання є електро­маг­нітним випромінюванням, що генерується в діапазоні довжин хвиль l = 0,2 – 1000 мкм. Лазери широко застосовуються у мікроелектроніці, біології, метрології, медицині, геодезії, зв’язку, стереоскопії, голографії, обчислювальної техніки у дослідженнях з термоядерного синтезу та в багатьох інших областях науки і техніки.

Лазери за ступенем небезпеки генерованого ними випроміню­вання поділяються на чотири класи:

1 клас – вихідне випромінювання не становить небезпеки для очей та шкіри;

2 клас – вихідне випромінювання становить небезпеку при опроміненні очей прямим або дзеркально відбитим випроміню­ванням;

3 клас – вихідне випромінювання становить небезпеку при опроміненні очей прямим, дзеркально відбитим, а також дифузним відбитим випромінюванням на відстані 10 см від поверхні, що має властивість дифузного відбивання і (або) при опроміненні шкіри прямим та дзеркально відбитим випромінюванням;

4 клас – вихідне випромінювання становить небезпеку при опроміненні шкіри дифузним відбитим випромінюванням на відстані 10 см від поверхні, що має властивість дифузного відбивання променів.

Робота лазерних установок може супроводжуватися також виникненням інших небезпечних та шкідливих виробничих факторів, таких як: шум, аерозолі, гази, електромагнітне та іонізуюче випромінювання.

Клас небезпеки лазерної установки визначається на основі довжини хвилі випромінювання l (мкм), розрахункової величини енергії опромінення Е (Дж) та ГДР для даних умов роботи.

Визначення рівнів опромінення персоналу для лазерів 2–4 класів повинно проводитися періодично не рідше одного разу на рік в порядку поточного санітарного нагляду.

У тому випадку, коли колективні засоби захисту не дозволяють забезпечити достатнього захисту, застосовуються засоби індивідуаль­ного захисту (ЗІЗ) – окуляри проти лазерів та захисні маски.

Конструкція окулярів проти лазерів повинна забезпечувати зменшення інтенсивності опромінення очей лазерним випроміню­ванням до ГДК у відповідності з вимогами ГОСТ 12.4.013-75.

Загальні положення.Дія електричного струму на людину носить різноманітний характер. Проходячи через організм людини, електричний струм викликає термічну, електролітичну, а також біологічну дію.

Термічна дія струму проявляється в опіках деяких окремих ділянок тіла, нагріванні кровоносних судин, нервів, крові тощо.

Електролітична дія струму проявляється у розкладі крові та інших органічних рідин організму і викликає значні порушення фізико-хімічного складу.

 

 

Біологічна дія струму проявляється як подразнення та збудження живих тканин організму, що супроводжується мимовільними судомними скороченнями м’язів, у тому числі легенів та серця. В результаті можуть виникнути різні порушення і навіть повне припинення діяльності органів кровообігу та дихання.

Ця різноманітність дій електричного струму може призвести до двох видів ураження: до електричних травм та електричних ударів.

Електричні травми являють собою чітко виражені місцеві пошкодження тканин організму, викликані дією електричного струму або електричної дуги. У більшості випадків електротравми виліковні, але іноді при важких опіках травми можуть призвести до загибелі людини. Розрізняють такі електричні травми: електричні опіки, електричні знаки, металізація шкіри, електроофтальмологія та механічні пошкодження.

Електричний опік – найпоширеніша електротравма. Опіки бувають двох видів: опіки струмом (або контактний) та дугові. Опік струмом обумовлений проходженням струму крізь тіло людини в результаті контакту із струмоведучою частиною і є наслідком перетворення електричної енергії у теплову. Розрізняють чотири ступеня опіків: І – почервоніння шкіри; ІІ – утворення пухирів; ІІІ – змертвіння всієї товщі шкіри; ІV – обвуглювання тканин. Важкість ураження організму обумовлюється не ступенем опіку, а площею обпеченої поверхні тіла. Опіки струмом виникають при напругах не вище 1-2 кВ і є у більшості випадків опіками І та ІІ ступеня; іноді бувають і важкі опіки. За більш вищої напруги між струмоведучою частиною та тілом людини утворюється електрична дуга (температура дуги вище 3500 0С і в неї дуже велика енергія), яка спричиняє дуговий опік. Дугові опіки, як правило, важкі – ІІІ та ІV ступеня.

Електричні знаки – чітко окреслені плями сірого або блакитно-жовтого кольору на поверхні шкіри людини, що зазнала дії струму. Знаки бувають також у вигляді подряпин, ран, порізів або забитих місць, бородавок, крововиливів у шкіру та мозолів. У більшості випадків електричні знаки безболісні і лікування їх закінчується добре.

Металізація шкіри – це проникнення у верхні шари шкіри найдрібніших часток металу, що розплавився під дією електричної дуги. Це може статися при коротких замиканнях, вимиканнях рубильників під навантаженням тощо. Металізація супроводжується опіком шкіри, який викликається нагрітим металом.

Електроофтальмологія – ураження очей, викликане інтенсивним випромінюванням електричної дуги, спектр якої містить шкідливі для очей ультрафіолетові та ультрачервоні промені. Крім того, можливе попадання в очі бризок розплавленого металу. Захист від електроофтальмології досягається носінням захисних окулярів, які не пропускають ультрафіолетових променів, і забезпечують захист очей від бризок розплавленого металу.

Механічні пошкодження виникають у результаті різких неправильних судомних скорочень м’язів під дією струму, що проходить крізь тіло людини. В результаті можуть статися розриви шкіри, кровоносних судин та нервової тканини, а також вивихи суглобів і навіть переломи кісток. До цього ж виду травм потрібно віднести забиті місця, травми, викликані падінням людини з висоти, ударами об предмети в результаті мимовільних рухів або втрати свідомості через дію струму. Механічні пошкодження є, як правило, серйозними травмами, що вимагають тривалого лікування.

Електричний удар.Це збудження живих тканин організму електричним струмом, що проходить крізь нього, яке супровод­жується мимовільними судомними скороченнями м’язів. Залежно від наслідку дії струму на організм електричні удари умовно поділяються на наступні чотири ступеня:

І – судомне скорочення м’язів без втрати свідомості;

ІІ – судомне скорочення м’язів, втрата свідомості, але збереження дихання та роботи серця;

ІІІ – втрата свідомості та порушення серцевої діяльності чи дихання (або всього разом);

ІV – клінічна смерть, тобто відсутність дихання та кровообігу.

Причинами смерті в результаті ураження електричним струмом можуть бути: припинення роботи серця, припинення дихання та електричний шок. Припинення роботи серця, як наслідок дії струму на м’яз серця, найнебезпечніше. Ця дія струму може бути прямою, коли струм протікає крізь область серця, і рефлекторною, коли струм проходить по центральній нервовій системі.

 

 

В обох випадках може статися зупинка серця або настане його фібриляція (безладне скорочення м’язових волокон серця фібрил), що призведе до припинення кровообігу.

Припинення дихання може бути викликане прямою або рефлекторною дією струму на м’язи грудної клітки, що беруть участь у процесі дихання. За тривалої дії струму настає, так звана асфіксія (ядуха) – хворобливий стан в результаті нестачі кисню та надлишку діоксиду карбону в організмі. Під час асфіксії втрачається свідомість, чутливість, рефлекси, потім припиняється дихання і, насамкінець, зупиняється серце – настає клінічна смерть.

Електричний струм – своєрідна важка нервово-рефлекторна реакція організму на сильне подразнення електричним струмом, яке супроводжується глибоким розладом кровообігу, дихання, обміну речовин тощо. Шоковий стан триває від кількох десятків секунд до кількох діб. Після цього може настати повне одужання як результат своєчасного лікувального втручання або загибель організму через повне згасання життєво важливих функцій.

Фактори, що визначають небезпеку ураження електричним струмом. Характер та наслідки дії на людину електричного струму залежать від наступних факторів: електричного опору людини; величини напруги та струму; тривалості дії електричного струму; шляху струму крізь тіло людини; роду та частоти електричного струму; умов зовнішнього середовища.

Електричний опір тіла людини. Тіло людини є провідником електричного струму, однак неоднорідним за електричним опором. Найбільший опір електричному струму справляє шкіра, тому опір тіла людини визначається, головним чином, опором шкіри.

Шкіра складається з двох основних шарів: зовнішнього – епідермісу та внутрішнього – дерми. Зовнішній шар – епідерма, у свою чергу має кілька шарів, з яких самий товстий верхній шар називається роговим. Роговий шар в сухому та незабрудненому стані можна розглядати як діелектрик: його питомий об’ємний опір досягає 105 - 106 Ом×м, що в тисячі разів перевищує опір інших шарів шкіри - дерми. Опір дерми незначний: він у багато разів менший опору рогового шару. Опір тіла людини при сухій, чистій та непошкодженій шкірі (виміряний при напрузі 15–20 В) коливається від 3 до 100 кОм і більше, а опір внутрішніх шарів тіла складає усього 300-500 Ом. Внутрішній опір тіла вважається активним. Його величина залежить від довжини та поперечного розміру ділянки тіла, по якій проходить струм. Зовнішній опір тіла складається наче з двох паралельно включених опорів: активного та ємнісного. На практиці звичайно нехтують ємнісним опором, який має невелике значення, і вважають опір тіла людини активним і незмінним. За розрахункову величину при змінному струмі проми­слової частоти приймають активний опір тіла людини, що дорівнює 1000 Ом.

У реальних умовах опір тіла людини не є сталою величиною. Він залежить від ряду факторів, у тому числі від стану шкіри, стану навколишнього середовища, параметрів електричного кола тощо. Пошкодження рогового шару (порізи, подряпини, садна тощо) зменшують опір тіла до 500–700 Ом, що збільшує небезпеку ураження людини струмом. Такий самий вплив справляє зволоження шкіри водою або потом. Таким чином, робота із електрообладнанням вологими руками або в умовах, що викликають зволоження шкіри, а також при підвищеній температурі, яка викликає посилене виділення поту, підвищує небезпеку ураження людини струмом. Забруднення шкіри шкідливими речовинами, які добре проводять електричний струм (пил, окалина тощо), призводить до зменшення її опору.

На опір тіла справляє вплив площа контактів, а також місце доторкання, тому що у однієї й тієї самої людини опір шкіри неоднаковий на різних ділянках тіла. Найменший опір має шкіра обличчя, шиї, рук на ділянці вище долоні та особливо на тому їх боці, що повернутий до тулуба, під пахвами, на тильному боці кисті тощо. Шкіра долоні та підошов має опір, що у багато разів перевищує опір шкіри інших ділянок шкіри.

Із збільшенням струму та часу його проходження опір тіла людини падає, тому що при цьому посилюється місцеве нагрівання шкіри, що призводить до розширення її судин, до посилення постачання цієї ділянки кров’ю та до збільшення виділення поту. Із зростанням напруги, що прикладається до тіла людини, опір шкіри зменшується в десятки разів, наближаючись до опору внутрішніх тканин (300-500 Ом) Це пояснюється електричним пробоєм рогового шару шкіри, збільшенням струму, що проходить крізь шкіру. Із збільшенням частоти струму опір тіла буде зменшуватися і при 10-20 кГц зовнішній шар шкіри практично втрачає опір електричному струму.

 

 

Величина струму та напруга. Основним фактором, що обумовлює результат ураження електричним струмом, є сила струму, що проходить крізь тіло людини. Напруга, прикладена до тіла людини, також впливає на результат ураження, але лише настільки, наскільки вона визначає значення струму, який проходить крізь людину.

В і д ч у т н и й с т р у м – електричний струм, що викликає під час проходження через організм відчутні подразнення. Відчутні подразнення викликає змінний струм силою 0,6 – 1,5 мА та постійний – силою 5–7 мА. Вказані значення є п о р о г о в и м и відчутними струмами: з них починається область відчутних струмів.

С т р у м, щ о н е в і д п у с к а є – електричний струм, що викликає під час проходження крізь людину нездоланні судомні скорочення м’язів руки, у якій затиснутий провідник. Пороговий струм, що не відпускає, складає 10–15 мА змінного струму та 50–60 мА постійного струму. За такого струму людина вже не може самостійно розтиснути руку, в якій затиснута струмоведуча частина, і опиняється наче прикутою до неї.

С т р у м ф і б р и л я ц і ї – електричний струм, що викликає під час проходження крізь організм фібриляцію серця. П о р о г о в и й струм фібриляції складає 100 мА змінного струму і 300 мА постійного за тривалості дії 1-2 с на шляху рука-рука або рука-ноги. Струм фібриляції може досягти 5 А. Струм більше 5 А фібриляції серця не викликає. За таких струмів відбувається зупинка серця.

Рід та частота електричного струму.Постійний струм приблизно в 4–5 разів безпечніший змінного. Це витікає із порівняння порогових відчутних, а також таких, що не відпускають струмів для постійного та змінного струму. Значно менша небезпека ураження постійним струмом підтверджується і практикою експлуатації електроустановок: випадків смертельного ураження людей струмом в установках постійного струму в кілька разів менше, ніж в аналогічних установках змінного струму.

Це твердження справедливе тільки для напруг до 250–300 В. При висщих напругах постійний струм небезпечніший, ніж змінний (з частотою 50 Гц). Для змінного струму грає роль також і його частота. Із збільшенням частоти змінного струму повний опір тіла зменшується, що призводить до збільшення струму, який проходить крізь людину, а отже, підвищується небезпека ураження.

Найбільшу небезпеку становить струм з частотою від 50 до 100 Гц; при подальшому підвищенні частоти небезпека ураження зменшується і повністю зникає при частоті 45–50 кГц. Ці струми зберігають небезпеку опіків. Зниження небезпеки ураження струмом із зростанням частоти стає практично помітним при 1–2 кГц. Встановлено, що фізично здорові та сильні люди легше переносять електричні удари. Підвищеною сприйнятливістю до електричних ударів відрізняються особи, що страждають хворобами шкіри, серцево-судинної системи, органів внутрішньої секреції, легень, нервовими хворобамитощо.

Умови зовнішнього середовища. Стан навколишнього повітряного середовища, а також навколишня обстановка може суттєвим чином впливати на небезпеку ураження струмом. Вогкість, пил, який проводить струм, їдкі пари та гази, що справляють руйнівну дію на ізоляцію електроустановок, а також висока температура навколишнього повітря, зменшують електричний опір тіла людини, що збільшує небезпеку ураження її струмом.

Залежно від наявності перерахованих умов, що підвищують небезпеку дії струмом на людину, «Правила улаштування електроустановок» ділять всі приміщення за небезпекою ураження людей електричним струмом на наступні класи: без підвищеної небезпеки, з підвищеною небезпекою, особливо небезпечні, а також території розміщення зовнішніх електроустановок.

1. Приміщення без підвищеної небезпеки характеризуються відсутністю умов, що створюють підвищену або особливу небезпеку.

2. Приміщення з підвищеною небезпекою характеризуються наявністю у них однієї з наступних умов, що створюють підвищену небезпеку: а) вологості (відносна вологість повітря протягом тривалого часу перевищує 75 %) або струмопровідного пилу; б) струмопровідних підлог (металеві, земляні, залізобетонні, цегляні тощо); в) високої температури (вище + 35 0С); г) можливості одночасного доторкання людини до металоконструкцій будівель, що мають контакт з землею, до технічних апаратів, механізмів тощо, з одного боку, і до металевих корпусів електрообладнання – з другого боку.

 

3. Особливо небезпечні приміщення характеризуються наявністю одної з наступних умов, що створюють особливу небезпеку: а) особливої вогкості (відносна вологість повітря близько 100 %: стеля, стіни, підлога і предмети у приміщенні просочені вологою); б) хімічно активного або органічного середовища (що руйнує ізоляцію та струмоведучі частини електрообладнання); в) одночасно двох або більше умов підвищеної небезпеки.

Критерії безпеки електричного струму. Під час проектування, розрахунку та експлуатаційного контролю захисних систем керуються безпечними значеннями струму за даного шляху його протікання та тривалості впливу у відповідності з ГОСТ 12.1.038-82: за тривалого впливу допустимий безпечний струм прийнятий таким, що дорівнює 1 мА; за тривалості впливу до 30 с – 6 мА; для дії 1с та менше величини струмів не можуть розглядатися як такі, що забезпечують повну безпеку і приймаються в якості практично допустимих з досить малою імовірністю ураження.

Основні причини ураження електричним струмом.

¨ Випадкове доторкання до струмоведучих частин, що перебувають під напругою у результаті: помилкових дій під час проведення робіт; несправності захисних засобів, якими потерпілий торкався струмоведучих частин тощо.

¨ Поява напруги на металевих конструктивних частинах електрообладнання в результаті: пошкодження ізоляції струмоведучих частин; замикання фази мережі на землю; падіння проводу (що перебувають під напругою) на конструктивні частини електрообладнання та ін.

¨ Поява напруги на відімкнених струмоведучих частинах в результаті: помилкового увімкнення вимкненої установки; замикання між струмоведучими частинами, що включені або знаходяться під напругою; розряду блискавки в електроустановку тощо.

¨ Виникнення напруги кроку на ділянці землі, де перебуває людина, в результаті: замикання фази на землю; виносу потенціалу видовженим струмопровідним предметом (трубопроводом, залізничними рейками); несправності у обладнанні захисного заземлення тощо.

Напругою кроку (кроковою напругою) називається напруга між точками землі, обумовлена стіканням струму замикання на землю при одночасному контакті з ними ніг людини. Найбільший електричний потенціал буде у місці контакту провідника з землею. В міру віддалення від цього місця потенціал поверхні грунту зменшується, оскільки переріз провідника (грунту) збільшується пропорційно квадрату радіуса, і на відстані приблизно 20 м, може вважатися таким, що дорівнює нулю. Ураження при кроковій напрузі посилюється тому, що через судомні скорочення м’язів ніг людина може впасти, після чого коло струму замикається на тілі крізь життєво важливі органи. Крім того, зріст людини обумовлює більшу різницю потенціалів, прикладених до її тіла.

Технічні способи та засоби захисту.Для забезпечення електробезпеки застосовують окремо або у поєднанні один з іншим наступні технічні способи та засоби: захисне заземлення, занулення, захисне вимкнення, вирівнювання потенціалів, мала напруга, ізоляція струмоведучих частин; електричне розділення мереж, обладнання огородження, блокування, попереджувальна сигналізація, знаки безпеки, попереджувальні плакати; електрозахисні засоби.

Захисним заземленням називається навмисний електричний контакт із землею або її еквівалентом металевих неструмоведучих частин, які можуть опинитися під напругою при замиканні на корпус та через інші причини. Завдання захисного заземлення - усунення небезпеки ураження струмом у випадку доторкання до корпусу та інших струмоведучих металевих частин електроустановки, що опинилися під напругою. Захисне заземлення застосовують у трифазних мережах з ізольованою нейтраллю.

Принцип дії захисного заземлення – зменшення напруги між корпусом, що опинився під напругою, та землею до безпечного значення. У якості провідників заземлення дозволяється використовувати різні металеві конструкції: ферми, шахти ліфтів, підйомників, сталеві труби електропроводок, відкрито прокладені стаціонарні трубопроводи різного призначення (крім трубопроводів горючих та вибухонебезпечних газів, каналізації і центрального опалення).

Зануленням називається навмисне електричне з’єднання з нульовим захисним провідником металевих неструмоведучих частин, які можуть опинитися під напругою внаслідок замикання на корпус та через інші причини.

 

 

Завдання занулення – усунення небезпеки ураження струмом у випадку контакту з корпусом та іншими неструмоведучими металевими частинами електроустановки, що опинилися під напругою внаслідок замикання на корпус. Вирішується це завдання швидким вимкненням пошкодженої електроустановки із мережі.

Принцип дії занулення – перетворення замикання на корпус в однофазне коротке замикання (тобто замикання між фазними та нульовими проводами) з метою викликати більший струм, здатний забезпечити спрацьовування захисту і цим самим автоматично вимкнути пошкоджену установку із мережі живлення. Таким захистом можуть бути плавкі запобіжники, магнітні пускачі з тепловим захистом, контактори у поєднанні з тепловими реле, автомати, що здійснюють захист одночасно від струмів короткого замикання та від перевантаження.

Захисне вимкнення – швидкодіючий захист, що забезпечує автоматичне вимкнення електроустановки при виникненні у ній небезпеки ураження струмом. При застосуванні цього виду захисту безпека забезпечується швидкодіючим (0,1-0,2с) вимкнення аварійної ділянки або мереж у однофазному замиканні на землю або на елементи електрообладнання, нормально ізольовані від землі, а також при доторканні людини до частин, що перебувають під напругою. Захисне вимкнення може слугувати доповненням до систем заземлення та занулення, а також у якості єдиного та основного заходу захисту.

Мала напруга – це нормальна напруга не більша 42 В, що застосовується у електричних колах для зменшення небезпеки ураження електричним струмом. Застосування малих напруг сприяє різкому зменшенню небезпеки ураження, особливо під час роботи у приміщеннях із підвищеною небезпекою, особливо небезпечних та на зовнішніх установках. Однак електроустановки з такою напругою являють небезпеку при двофазному контакті. Малі напруги використовують для живлення електроінструменту, світильників стаціонарного освітлення, переносних ламп у приміщеннях із підвищеною небезпекою або особливо небезпечних та в інших випадках. Джерелами малої напруги можуть бути спеціальні знижувальні трансформатори із вторинним напруженням 12–14 В. Використання малих напруг - ефективний захід захисту, однак область його застосування невелика. Це обумовлено труднощами створення довгих мереж та потужних електроприймачів малої напруги.

Пристрої огородження застосовуються для того, щоб усунути можливість навіть випадкового контакту із струмоведучими частинами електроустановок.

Попереджувальна сигналізація, блокування, знаки безпеки. Блокувальні пристрої надійно виключають можливість випадкового контакту з частинами обладнання, що перебувають під напругою і розташовані у спеціальних закритих приміщеннях. Попереджувальну сигналізацію широко використовують у поєднанні з іншими заходами захисту. Сигналізацію виконують світловою або звуковою. Для профілактики електротравматизму застосовують знаки безпеки відповідно до вимог ГОСТ 12.4.026–76, а також попереджувальні плакати.

Електрозахисні засоби – вироби, які переносяться або перевозяться, і слугують для захисту людей, що обслуговують електроустановки, від ураження електричним струмом, дії електричної дуги та електромагнітного поля. За значенням захисні засоби умовно поділяють на ізолюючі, засоби огородження та допоміжні.

Ізолюючі захисні засоби слугують для ізоляції людини від струмоведучих частин та від землі. Іх поділяють на о с н о в н і та д о п о м і ж н і.

О с н о в н и м и є ізолюючі захисні засоби, що здатні надійно витримувати робочу напругу електроустановки і не допускати контакту із струмоведучими частинами, які зперебувають під напругою. В електроустановках напругою до 1000 В до основних ізолюючих захисних засобів відносяться оперативні штанги та кліщі для вимірювання струму, діелектричні рукавиці, інструмент з ізолюючими ручками та покажчики напруги.

Д о д а т к о в и м и є ізолюючі захисні засоби, що не розраховані на напругу електроустановки і самостійно не забезпечують безпеку персоналу. Тому ці засоби застосовуються разом з основними у вигляді додаткових заходів захисту. В електронних установках напругою до 1000 В до них відносяться діелектричні калоші, килимки, а також ізолюючі підставки.

Захисні засоби огородження – різні переносні огорожі, що слугують для тимчасового огородження струмоведучих частин і таким чином попереджують можливість контакту з ними.

Допоміжні захисні засоби – це інструменти, пристрої та пристосування, які призначені для захисту електротехнічного персоналу від падіння з висоти (запобіжні пояси, канати страхування та ін.); для безпечного підйому на опори (монтерські кігті, лази для підйому на бетонні опори тощо);

 

для захисту від світлових, теплових або хімічних дій (захисні окуляри, респіратори, протигази, брезентові рукавиці тощо); для захисту від шумів (протишумові навушники, шоломи та ін.).


Читайте також:

  1. Електробезпека
  2. Електробезпека
  3. Електробезпека
  4. Електробезпека
  5. Електробезпека
  6. ЕЛЕКТРОБЕЗПЕКА
  7. Електробезпека
  8. Електробезпека
  9. Лекція 6. Тема 2.8 (Продовження теми) - Електробезпека. Специфіка питань електробезпеки відповідно до галузі. Статична електрика. Блискавкозахист.




Переглядів: 1341

<== попередня сторінка | наступна сторінка ==>
Механічні коливаня | Вибухи і пожежі

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.037 сек.