МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||
Використання пакету EWB для виконання роботи
До основних параметрів біполярних транзисторів належать: Saturation current (IS) – зворотний струм колекторного переходу, А; Forward current gain coefficient (BF) – коефіціент підсилення струму в схемі з ЗЕ h21; Reverse current gain coefficient (BR) – коефіціент підсилення струму в схемі з ЗЕ при інверсному включенні транзистора (емітер і колектор міняються місцями); Base ohmic resistance (RB) – об’ємний опір бази, Ом; Collector ohmic resistance (RC) – об’ємний опір колектора, Ом; Emitter ohmic resistance (RE) – об’ємний опір емітера, Ом; Zero-bias B-E junction capacitance (CJE) – емність емітерного переходу при нульовій напрузі, Ф; Zero-bias C-E junction capacitance (CJC) – емність колекторного переходу при нульовій напрузі, Ф; Substrate capacitance (CJS) – ємність колектор-підложка, Ф; Forward transit time (TF) – час переносу заряду через базу, с; Revers transit (TR) – час переносу заряду через базу в інверсному включенні, с; B-E junction grading coefficient (ME) – коефіціент плавності емітерного переходу; B-C junction grading coefficient (MC) – коефіціент плавності колекторного переходу; Early voltage (VA) – напруга Ерлі, близька до параметру Uк max , В; Base-Emitter Leakage Saturation Current (ISE) – зворотний струм емітерного переходу, А; Forward beta high-current knee-point (IKF) – струм початку спаду підсилення по струму, близький до параметру Iк max, А; Base-emitter leakage emission coefficient (NE) – коефіціент неідеальності емітерного переходу; B-C junction potential (VJC) – контактна різниця потенціалів переходу база-колектор, В; B-E junction potential (VJE) – контактна різниця потенціалів переходу база-емітер, В. Рис. 5.3 Рис. 5.4
Оскільки метою каскаду є забезпечення максимальної якості підсилення, якість вихідного сигналу необхідно аналізувати за допомогою Фур’є-аналізу. На рис. 5.5 наведені результати Фур’є-аналізу вихідного сигналу, який зображений на осцилограмі (рис. 5.4). На нульовій частоті відображена постійна складова напруги, що відповідає значенню, яке можна побачити на вольтметрі. Перша гармонічна складова частоти 500 Гц трохи менша 3 В, що теж співпадає з показами осцилографа. Вищі гармоніки мають значно менші амплітуди і частоти, кратні частоті 500 Гц. На осцилограмі (рис. 5.6) покази вихідного сигналу для наочності зміщені по вертикальній осі на 1 В. Рис. 5.6 Послідовно збільшуючи амплітуду вхідного сигналу і підбираючи величину базового резистора, можна знайти точку, при якій спотворення позитивної і негативної амплітуд вихідного сигналу при зростанні вхідного з’являтимуться одночасно. Така точка і буде робочою точкою транзисторного підсилювача. Це також зручніше робити за допомогою Parameter Sweep. Для неспотвореного сигналу у цій точці матиме місце мінімальний рівень вищих гармонік. Рис. 5.7 Для схеми, що аналізується, за допомогою пристрою Bode Plotter або директиви AC Analysis можна отримати частотні характеристики. Bode Plotter підключається так, як вказано на рис. 5.7. Вибір робочої точки для польових транзисторів розглянемо стосовно канальних транзисторів, для яких, при відсутності напруги на затворі, канал буде повністю відкритим. Схема вибору робочої точки приведена на рис. 5.10. Особливість її полягає у тому, що напругу на затворі задають опори витоку і затвору. Параметри підсилення каскаду визначаються величиною резистора стоку і крутизною стоко-затворної характеристики транзистора в робочій точці.
|
||||||||||||||
|