МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||||||||
Епюр № 4
Цільове призначення. Закріплення знань студентів про побудову ліній взаємного перетину поверхонь. Зміст роботи. Дано два геометричних тіла. Необхідно розв’язати наступні задачі: 1. Побудувати лінію перетину двох тіл методом січних площин (табл.4). 2. Побудувати лінію перетину двох тіл методом січних сфер (табл.5).
Методичні вказівки. Дані для виконання епюру взяти з табл. 4 і 5. Розміри наносити не обов’язково. Формат епюру – А3. Для знаходження точок ліній перетину двох поверхонь вибирають раціональний спосіб розв’язку. Потрібно вибрати такі допоміжні січні площини, які при перетині з даними поверхнями можуть дати прості для побудови лінії (наприклад, прямі лінії, кола). Яким би способом не виконувалась побудова ліній перетину, необхідно спочатку знайти характерні або опорні точки шуканої кривої. Приклад виконання епюру показано на рис.4. Література: [1] с. 163-178; [2] с. 67-76; [4] с. 194-224; [5] с. 386-401.
Епюр № 4
Цільове призначення. Закріплення знань студентів про побудову ліній взаємного перетину поверхонь. Зміст роботи. Дано два геометричних тіла. Необхідно розв’язати наступні задачі: 3. Побудувати лінію перетину двох тіл методом січних площин (табл.4). 4. Побудувати лінію перетину двох тіл методом січних сфер (табл.5).
Методичні вказівки. Дані для виконання епюру взяти з табл. 4 і 5. Розміри наносити необов’язково. Формат епюру – А3. Для знаходження точок ліній перетину двох поверхонь вибирають раціональний спосіб розв’язку. Потрібно вибрати такі допоміжні січні площини, які при перетині з даними поверхнями можуть дати прості для побудови лінії (наприклад, прямі лінії, кола). Яким би способом не виконувалась побудова ліній перетину, необхідно спочатку знайти характерні або опорні точки шуканої кривої. Приклад виконання епюру показано на рис.4.
Контрольні питання
1. В яких випадках при перегині кривих поверхонь із прямою лінією доцільно використовувати допоміжне проекціювання, а в яких — спосіб допоміжних перерізів? 2. У чому полягає суть спрощення при побудові лінії взаємного перетину двох поверхонь, якщо одна з поверхонь проекціююча? 3. Який спосіб є найбільш доцільним при розв'язанні задачі на взаємний перетин прямого кругового конуса з вертикальною віссю та сфери? Таблиця 4 Індивідуальні завдання до епюра 4 Продовження таблиці 4 Таблиця 5 Індивідуальні завдання до епюра 4
Рекомендована література 1. Інженерна та комп’ютерна графіка / Б.Д. Коваленко, Р.А. Ткачук, 2. Михайленко В.Є., Ванін В.В., Ковальов С.М. Інженерна та комп’ютерна графіка: Підручник / За ред. В.Є. Михайленка. - К.: Каравела, 2010. –360 с. 3. Хмеленко О.С. Нарисна геометрія. Підручник - К.:Кондор, 2008 р. –440 с. 4. Гордон В. О., Семенцов-Огиевский М. А. Курс начертательной геометрии: Учеб. пособие/ Под ред. Ю. Б. Иванова.—23-е изд., перераб. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. – 272 с. 5. Арустамов X. А. Сборник задач по начертательной геометрии. Изд. 9-е, стереотип. Учебное пособие для студентов вузов. — М.: Машиностроение, 1978. –445 с. 6. Ванін В.В., Білицька Н.В., Гетьман О.Г., Міхлевська Н.В. Навчальні завдання з нарисної геометрії та інженерної графіки для програмованого навчання студентів немеханічних спеціальностей.— К.: НТУУ “КПІ”, 2013. –60 с.
Рекомендована література 1. Інженерна та комп’ютерна графіка / Б.Д. Коваленко, Р.А. Ткачук, 2. Михайленко В.Є., Ванін В.В., Ковальов С.М. Інженерна та комп’ютерна графіка: Підручник / За ред. В.Є. Михайленка. - К.: Каравела, 2010. –360 с. 3. Хмеленко О.С. Нарисна геометрія. Підручник - К.:Кондор, 2008 р. –440 с. 4. Гордон В. О., Семенцов-Огиевский М. А. Курс начертательной геометрии: Учеб. пособие/ Под ред. Ю. Б. Иванова.—23-е изд., перераб. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. – 272 с. 5. Арустамов X. А. Сборник задач по начертательной геометрии. Изд. 9-е, стереотип. Учебное пособие для студентов вузов. — М.: Машиностроение, 1978. –445 с. 6. Ванін В.В., Білицька Н.В., Гетьман О.Г., Міхлевська Н.В. Навчальні завдання з нарисної геометрії та інженерної графіки для програмованого навчання студентів немеханічних спеціальностей.— К.: НТУУ “КПІ”, 2013. –60 с.
|
|||||||||||||||||||||
|