Від складських приміщень до цеху постачання здійснюються двома вантажними автомобілями. Ймовірність того, що кожна вантажівка вчасно прибуде до цеху дорівнює 0.95. Знайти ймовірність того, що хоча б одна з вантажівок прибуде вчасно.
Рішення
Подія А – хоча б одна з вантажівок прибуде вчасно. Подія А складається з появи хоча б однієї з подій: - вчасне прибуття 1-ї вантажівки; - вчасне прибуття 2-ї вантажівки, що є незалежними подіями, тоді:
,
,
,
.
Задача 3.1.2
Пристрій складається з трьох незалежно працюючих елементів. Ймовірність відмови елементів відповідно дорівнюють – 0,06; 0,05 і 0,08. Знайти ймовірність відмови пристрою, якщо для цього достатньо, щоб відмовив хоча б один елемент.
Рішення
Подія А складається з появи хоча б однієї з подій:
- відмовив I елемент;
- відмовив II елемент;
- відмовив III елемент, що є незалежними подіями, тому:
,
де
;
;
;
.
Задача 3.1.3
Троє стрільців зробили постріл по цілі. Ймовірність влучення в ціль першого стрільця 0,75, другого – 0,65 і третього – 0,9. Знайти ймовірність того, що хоча б один зі стрільців влучить у ціль.
Задача 3.1.4
Студент розшукує потрібну формулу в двох довідниках. Ймовірність того, що формула міститься в першому довіднику 0,7, в другому довіднику – 0,65. Знайти ймовірність того, що формула міститься хоча б в одному з довідників.