![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Многочлени над числовими полямиа)Многочлени над полем С Теорема 1. Кожний многочлен степеня вищого одиниці є звідним в полі С. Доведення. Якщо Наслідок 1. Для того, щоб многочлен був незвідним у полі С, необхідно і достатньо, щоб його степінь дорівнював одиниці.
Наслідок 2. Кожний многочлен над полем С єдиним способом розкладається на лінійні множники і цьому полі: де
Якщо в розкладі існують кратні множники, то,
б) Многочлени над полем R Теорема 2. Якщо комплексне число то спряжене число Доведення. Обчислимо
Оскільки Обчислимо тепер (бо Обидва корені
Теорема 3. Кожний многочлен над полем R , степінь якого перевищує 2, є звідним у цьому полі. Доведення. Нехай Якщо
тобто Якщо
де
Із викладеного вище випливає наступне твердження:
кожний многочлен f(x) над полем R має єдиний розклад на незвідні множники в цьому полі: в) Многочлени над полем Q
Основна відмінність многочленів над полем Q від многочленів над полями R та С полягає в тому, що над полем Q існують многочлени як завгодно високого степеня, незвідні в полі Q, тоді як в кільці R[x] звідним є довільний многочлен степеня вищого 2, а в кільці С[x] – степеня вищого 1. Ясно, що будь-яке алгебраїчне рівняння з раціональними коефіцієнтами множенням на спільний знаменник усіх коефіцієнтів можна звести до рівняння з цілими коефіцієнтами . Терема Ейзенштейна (критерій незвідності). Якщо в многочлені з цілими коефіцієнтами Доведення. Досить показати , що при заданих умовах Тут r+s = n. Нехай Тоді
Отже ,
Таким чином, у кільці многочленів над полем Q є многочлени довільного степеня , незвідні в полі Q .
Читайте також:
|
||||||||
|