МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Інтерполяційні многочлени Ньютона.В практиці функціонального інтерполювання іноді зручніше використовувати многочлени Ньютона, степені яких можна послідовно підвищувати шляхом задавання додаткових вузлів (і т.д.) Введемо поняття різниць (розділених та кінцевих). Нехай задано значення функцій y=f(x) на системі точок Скінченні різниці вводяться для функції Розділені різниці на не рівновіддаленій системі точок
Скінченна різниця 1-го порядку: Скінченна різниця 2-го порядку:
Скінченна різниця k - го порядку:
Розділена різниця 1-го порядку Розділена різниця 2-го порядку
Розділена різниця k -го порядку Послідовність одержання кінцевих і розділених різниць при k=3 довільної функції наочно представлено таблицями
Таблиця скінченних різниць
Таблиця розділених різниць
Для гладких функцій числові значення та
Нехай функція y=f(x) задана на системі не рівновіддалених точок: Тоді інтерполяційний многочлен Ньютона (позначається ) має вигляд
(5)
Нехай функція y=f(x) задана на системі рівновіддалених точок Тоді мають місце І та ІІ інтерполяційні формули Ньютона
(6)
(7) Формула (6) застосовується для знаходження f(x) в точках близьких до , формула (7) для знаходження в f(x) точках близьких до .
Приклад2. Побудувати а), б) , в) (умова прикладу 1) Розв’язання. а) Для побудови многочлена Ньютона для довільно розташованих вузлів складемо таблицю
За формулою (5) для n=3 маємо
б) Оскільки в даній задачі задано рівновіддалені вузли скористаємося також формулою (6).
Складемо відповідну таблицю
Можемо записати першій інтерполяційний многочлен Ньютона в) Запишемо другий інтерполяційний многочлен Ньютона Порівнюючи з результатами прикладу (1) можемо зробити висновок .
Читайте також:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|