Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Теоретическое введение

Регрессионный и корреляционный анализ позволяет установить и оценить зависимость изучаемой случайной величины Y от одной или нескольких других величин X, и делать прогнозы значений Y. Параметр Y, значение которого нужно предсказывать, является зависимой переменной. Параметр X, значения которого нам известны заранее и который влияет на значения Y, называется независимой переменной. Например, X – количество внесенных удобрений, Y – снимаемый урожай; X – величина затрат компании на рекламу своего товара, Y – объем продаж этого товара и т.д.

Корреляционная зависимость Y от X – это функциональная зависимость

, (9.1)

где – среднее арифметическое (условное среднее) всех возможных значений параметра Y, которые соответствуют значению . Уравнение (9.1) называется уравнением регрессииY на X, функция регрессиейY на X, а ее график – линией регрессииY на X.

Основная задача регрессионного анализа – установление формы корреляционной связи, т.е. вида функции регрессии (линейная, квадратичная, показательная и т.д.).

Метод наименьших квадратов позволяет определить коэффициенты уравнения регрессии таким образом, чтобы точки, построенные по исходным данным , лежали как можно ближе к точкам линии регрессии (9.1). Формально это записывается как минимизация суммы квадратов отклонений (ошибок) функции регрессии и исходных точек

,

где – значение, вычисленное по уравнению регрессии; отклонение (ошибка, остаток) (рис.9.1); n – количество пар исходных данных.

Рис.9.1. Понятие отклонения для случая линейной регрессии

В регрессионном анализе предполагается, что математическое ожидание случайной величины равно нулю и ее дисперсия одинакова для всех наблюдаемых значений Y. Отсюда следует, что рассеяние данных возле линии регрессии должно быть одинаково при всех значениях параметра X. В случае, показанном на рис.9.2 данные распределяются вдоль линии регрессии неравномерно, поэтому метод наименьших квадратов в этом случае неприменим.

Рис.9.2. Неравномерное распределение исходных точек вдоль линии регрессии

Основная задача корреляционного анализа – оценка тесноты (силы) корреляционной связи. Теснота корреляционной зависимости Y от X оценивается по величине рассеяния значений параметра Y вокруг условного среднего . Большое рассеяние говорит о слабой зависимости Y от X, либо об ее отсутствии и, наоборот, малое рассеяние указывает на наличие достаточно сильной зависимости.

Коэффициент детерминации показывает, на сколько процентов ( ) найденная функция регрессии описывает связь между исходными значениями параметров X и Y

, (9.2)

где – объясненная вариация; – общая вариация (рис.9.3).

 

Рис.9.3. Графическая интерпретация коэффициента детерминации

для случая линейной регрессии

 

Соответственно, величина показывает, сколько процентов вариации параметра Y обусловлены факторами, не включенными в регрессионную модель. При высоком ( ) значении коэффициента детерминации можно делать прогноз для конкретного значения .

 


Читайте також:

  1. ВВЕДЕНИЕ
  2. Введение
  3. Введение
  4. ВВЕДЕНИЕ
  5. ВВЕДЕНИЕ
  6. Введение
  7. Введение 26 страница
  8. Введение 26 страница
  9. ВВЕДЕНИЕ В MICROSOFT OFFICE.
  10. Лекция 1. Введение
  11. Рассел Б. История западной философии.Введение
  12. Тема 1. Введение в микроэкономику




Переглядів: 726

<== попередня сторінка | наступна сторінка ==>
Задача №8.4 | Методические рекомендации

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.