МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Розділ 6. ІНТЕГРАЛЬНЕ ЧИСЛЕННЯ ФУНКЦІЙ ОДНІЄЇ ЗМІННОЇ
Одним з основних завдань розділу ІV диференціальне числен-ня функцій однієї змінної, є завдання знаходження похідної від заданої функції. Розділ математики, який розв’язує обернену задачу
– знаходження функції за її похідною (інтегрування), а також інші задачі, які безпосередньо зв’язані з інтегруванням називається інтегральним численням. Предметом вивчення даного розділу є інтеграли: визначений, невизначений, поверхневий, криволінійний, подвійний, потрійний і інші, їхні властивості, методи знаходження, їх застосування до розв’язування різних задач. Інтегральне числення практично виникло із задач обчислення площ і об’ємів різних фігур і тіл. Вперше такі задачі намагались розв’язати вчені Стародавньої Греції (Евдокс Кнідський, Архімед та ін.). В ХVІ - ХVІІ ст.., інтенсивний промисловий розвиток в Європі привів до розвитку інтегрального числення та його застосування. Праці вчених І. Кеплера, Б. Кавальєрі, П. Ферма, Е. Торрічеллі, Дж. Валліса, Б. Паскаля, Х. Гюйгенса поглибили теоретичні основи інтегрального числення. Вчені І. Ньютон та Г. Лейбніц створили ряд загальних методів знаходження інтегральних сум. Їх праці багато задач інтегрального числення звели до суто технічного рівня. Г. Лейбніц ввів зручну символіку, яка застосовується і тепер. А фор-мула Ньютона-Лейбніца, яка зв’язала невизначений і визначений інтеграли, є центральною формулою інтегрального числення. По-дальший історичний розвиток інтегрального числення пов’язаний з іменами І. Бернуллі, Л. Ейлера, П. Чебишева, О. Коші, В. Буня-ковського. Суттєвими для розвитку інтегрального числення є роботи видатного українського математика М.В. Остроградського. (12.09.1801-20.12.1861, народився в с. Пашенівка, Козельського р-ну Полтавської обл.),. Навчався в Харківському університеті, де його вчителями були Т.Ф. Осиповський та А.Ф. Павловський. Під час перебування в Парижі слухав лекції А.М.Ампера, О.Л.Коші, П.С.Лапласа, С.Д.Пуассона, Ж.Б.Ж.Фур’є. Друг В.Я.Буняковського. Перебуваючи в Петербурзі потоваришував з Т. Г. Шевченком. Основні праці М.В. Остроградського стосуються математичної фізики, математичного аналізу (формула зв’язку інтеграла по об’єму з інтегралом по поверхні, принцип розкладності функцій в ряд за власними функціями, принцип локалізації для тригонометричних
рядів, правило перетворення змінних в подвійних інтегралах, метод інтегрування раціональних функцій і ін.), теоретичної механіки. Розв’язав деякі задачі з теорії чисел, алгебри, диференціальних рівнянь, теорії рядів.
§ 1.Невизначений інтеграл 1.1. Первісна функція та невизначений інтеграл Задача знаходження для функції f(x) такої функції F(x), що F ′( x ) = f ( x ) є основною задачею інтегрального числення.
Операція інтегрування (знаходження інтегралу) є оберненою операцією до диференціювання ( знаходження похідної). Термін інтеграл походить від латинськогоinteger–цілий.Деколи вжива-
ють термін – антипохідна. Означення1. Функція F(x) називається первісною для функції f(x), якщо для довільного х з області визначення f(x),
F′( x ) = ( x4 )′= 4x3 = f ( x ).
Відшукання первісної є операція неоднозначна. Так
Означення2. Сукупність усіх первісних для функції f(x)
Читайте також:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|