In the future, flight crews will be expected to assume much larger roles in route planning and metering for approaches. Cognitive engineering has already assumed an important role as the industry considers the effects of new technology on the skills, workload, and coordination with other airplanes required of both flight crews and air traffic controllers. For example, cooperation among human factors specialists, data link communications engineers, and end users has resulted in significant changes in the design of the interfaces that flight crews and controllers have with the computers that support their tasks and in the operational use of data link messages. The changes enhance user comprehension, reduce error rates, and result in decreased training requirements.
Perhaps the simplest example is the progression from an aircraft communication addressing and reporting system interface to a future air navigation system interface for data link. Boeing initially studied the effects of uplink message formats on pilot comprehension in 747-400 operational trials (fig. 1). Lessons learned were used when designing the data link interface in the Pegasus flight management system incorporated into current-production 757 and 767 airplanes. These same changes are being applied retroactively to the 747-400. Another example is the 777 communications management interface, which uses multifunction displays and cursor controls to simplify management of data-linked communications and can be customized by operators.