Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Хвильова природа електрона. Електронні хмари

У 20-х рр. ХХ ст. завдяки роботам де Бройля, Шредінгера, Гейзенберга та інших вчених були розроблені основи хвильової теорії про двоїсту корпускулярно-хвильову природу світлового випромінювання. Ейнштейн довів, що випромінювання є потоком неподільних матеріальних частинок (фотонів), енергія яких визначається рівнянням Планка.

Із рівнянь Планка (E=hn) і Eйнштейна (E=mc2) випливає, що hn=mc2. Враховуючи, що n=с/l і швидкість руху фотона v дорівнює швидкості світла с, одержимо основне рівняння хвильової механіки – рівняння де Бройля:

. (11)

Із цього рівняння випливає, що частинці масою m, яка рухається із швидкістю v, відповідає хвиля довжиною l. Рівняння (11) можна застосовувати для ха-рактеристики руху не лише фотона , а й інших матеріальних мікрочастинок: електрона, нейтрона, протона тощо.

Отже, електрон одночасно є і частинкою, і хвилею. У 1925 р. Гейзенберг запропонував принцип невизначеності,згідно з яким не можна одночасно встановити точне місцезнаходження електрона в просторі та його швидкість, або імпульс.

Нове уявлення про електрон примусило відмовитись від прийнятої раніше моделі атома, за якою електрон рухається по певних колових або еліптичних орбіталях.

Електрон може знаходитися в будь-якій частині простору, який оточує ядро атома, однак ймовірність його місцезнаходження в тій чи іншій частині атома неоднакова.

Рух електрона має хвильовий характер, тому квантова механіка описує цей рух в атомі за допомогою хвильової функції y, яка набуває різних значень у різних точках атомного простору. Відомо, щоб знайти точку в просторі, треба визначити її координати x, y, z, що математично записується залежністю y= f(x,y,z).

Оскільки рух електрона хвилеподібний, визначення хвильової функції зводиться до знаходження амплітуди електронної хвилі.

Рух електронної хвилі кількісно характеризується амплітудою y, яку можна обчислити з диференціального рівняння Шредінгера, що пов’язує хвильову функцію y з потенціальною і повною енергією електрона. Для одноелектронного атома гідрогену рівняння Шредінгера має такий вигляд:

, (12)

де m маса електрона; h – стала Планка; Е – повна енергія електрона; U – потенціальна енергія електрона.

Для атомів з кількома електронами застосовують наближене рівняння Шредінгера. Треба зазначити, що допустимі розв’язки рівняння (12) можливі тільки для певних дискретних значень енергії електрона. Кожній із функцій y1, y2, y3,..., yn, які є розв’язками хвильового рівняння, відповідає певне значення енергії Е1, Е2, Е3, ..., Еn.

За рівнянням (12) можна обчислити y-амплітуду електронної хвилі (хвильову функцію). Квадрат амплітуди y2 виражає ймовірність місцезнаходження електрона в певній точці атомного простору, а величина y2dV – ймовірність місцезнаходження електрона в елементі об’єму dV.

Як модель стану електрона в атомі у квантовій механіці прийнято уявлення про електронну хмару, густина відповідних ділянок якої пропорційна ймовірності перебування там електрона. Електрон ніби “розмазаний” навколо ядра по сфері, віддаленій від нього на певну відстань. Одна з можливих форм електронної хмари атома показана далі (рис. 9).

Максимальна електронна густина відповідає найбільшій імовірності місцезнаходження електрона, тобто визначається величиною y2. Очевидно, чим міцніший зв’язок електрона з ядром, тим електронна хмара менша за розміром і компактніша за розподілом заряду.

Рис. 9. Електронна хмара 1s-електрона
Простір навколо ядра, у якому найімовірніше перебуває електрон, називається орбіталлю.Таке тлумачення орбіталі дещо спрощене. Орбіталь – математичне поняття, зміст якого випливає із хвильового рів-

няння. Тому можна вважати, що хвильова функція, яка є розв’язком рівняння Шредінгера, називається орбіталлю.

Отже, ядро атома оточене електронними хмарами. Основні характеристики, які визначають рух електрона навколо ядра, - це його енергія і просторові особливості відповідної йому орбіталі.


Читайте також:

  1. Активні компоненти – електронні прилади
  2. Аналогові обчислювальні електронні машини.
  3. Багатоелектронні атоми.
  4. Бактеріофаг, його природа і практичне застосування. Вплив бактеріофага на мінливість мікроорганізмів.
  5. Банк і його операції. Правова природа банківської діяльності
  6. Бюлетені та інші інформаційні матеріали, електронні видання
  7. Визначення режиму вибухового перетворення хмари ГППС
  8. Виникнення, суть і функції грошей. Особливості функціонування паперових грошей за сучасних умов. Роль золота. «Електронні гроші».
  9. Вправа «Зустріч Чорної хмари з Сонечком»
  10. Геометрична та хвильова оптика.
  11. ГЛАВА 1. ПРИРОДА И ПРЕДЫСТОРИЯ
  12. Глава 1. Природа человека




Переглядів: 1991

<== попередня сторінка | наступна сторінка ==>
Основні положення теорії будови атома Бора | Квантові числа

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.061 сек.