Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






Економічна і математична постановка задачі нелінійного програмування

Опукле програмування

Опукле програмування розглядає методи розв’язування задач нелінійного програмування, математичні моделі яких містять опуклі або угнуті функції.

Загальний вигляд задачі опуклого програмування такий:

, (7.27)

, ; (7.28)

, (7.29)

де , – угнуті функції.

Аналогічний вигляд має задача для опуклих функцій.

Позначимо: , тоді , і маємо:

, (7.30)

; (7.31)

, (7.32)

де , – опуклі функції.

Оскільки ці задачі еквівалентні, то нижче розглянемо задачу (7.27)-(7.29).

Множина допустимих планів задачі, що визначається системою (7.28), є опуклою.

Як наслідок теорем 7.2 та 7.3 справджується таке твердження: точка локального максимуму (мінімуму) задачі опуклого програмування (7.27)-(7.29) є одночасно її глобальним максимумом (мінімумом).

Отже, якщо визначено точку локального екстремуму задачі опуклого програмування, то це означає, що знайдено точку глобального максимуму (мінімуму).

У разі обмежень-нерівностей задачу опуклого програмування розв’язують, застосовуючи метод множників Лагранжа.

Функція Лагранжа для задачі (7.27)-(7.29) має вид:

(7.33)

де – множники Лагранжа.

Використовуючи теорему Куна-Таккера, маємо необхідні та достатні умови існування оптимального плану задачі опуклого програмування.

Теорема 7.4. Якщо задано задачу нелінійного програмування виду (7.27)-(7.29), де функції диференційовні і вгнуті по Х, то для того, щоб вектор був розв’язком цієї задачі, необхідно і достатньо, щоб існував такий вектор , що пара ( , ) була б сідловою точкою функції Лагранжа, тобто щоб виконувалися умови:

(І) , ; (7.34)

(ІІ) , ; (7.35)

(ІІІ) , ; (7.36)

(IV) , . (7.37)

Для задачі мінімізації (7.30)-(7.32), де всі функції диференційовні і опуклі по Х, маємо умови, аналогічні вищенаведеним, але зі знаком «≥» в нерівностях (7.35) та (7.37).

 

Раніше було розглянуто методи розв’язування задач лінійного програмування. Ці методи найкраще розроблені, легко реалізуються на ПЕОМ, а тому набули широкого застосування в багатьох галузях науки, техніки та економіки. Проте лінійні моделі відображають лише певну й вельми обмежену сукупність властивостей навколишнього світу. Адже, скажімо, соціально-економічні процеси переважно не є лінійними. Галузі, об’єднання та окремі підприємства народного господарства функціонують і розвиваються за умов невизначеності, а тому адекватно їх можна описати нелінійними, стохастичними, динамічними моделями. Отже, для ефективного управління народним господарством в цілому, його галузями і окремими об’єктами господарювання потрібне застосування нелінійних економіко-математичних моделей та методів.

Зауважимо, що сучасний рівень розвитку комп’ютерної техніки і методів математичного моделювання створює передумови для застосування нелінійних методів, а це може суттєво підвищити якість розроблюваних планів, надійність та ефективність рішень, які приймаються.

Досить детально розглянута в лекціях, присвячених лінійному програмуванню, задача пошуку оптимальних обсягів виробництва ґрунтується на допущеннях про лінійність зв’язку між витратами ресурсів і обсягами виготовленої продукції; між ціною, рекламою та попитом тощо. Але такі зв’язки насправді є нелінійними, тому точніші математичні моделі доцільно формулювати в термінах нелінійного програмування.

Нехай для деякої виробничої системи необхідно визначити план випуску продукції за умови найкращого способу використання її ресурсів. Відомі загальні запаси кожного ресурсу, норми витрат кожного ресурсу на одиницю продукції та ціни реалізації одиниці виготовленої продукції. Критерії оптимальності можуть бути різними, наприклад, максимізація виручки від реалізації продукції. Така умова подається лінійною залежністю загальної виручки від обсягів проданого товару та цін на одиницю продукції.

Однак, загальновідомим є факт, що за умов ринкової конкурен­ції питання реалізації продукції є досить складним. Обсяг збуту продукції визначається передусім її ціною, отже, як цільову функ­цію доцільно брати максимізацію не всієї виготовленої, а лише реалізованої продукції. Необхідно визначати також і оптимальний рівень ціни на одиницю продукції, за якої обсяг збуту був би максимальним. Для цього її потрібно ввести в задачу як невідому величину, а обмеження задачі мають враховувати зв’язки між ціною, рекламою та обсягами збуту продукції. Цільова функція в такому разі буде виражена добутком двох невідомих величин: оптимальної ціни одиниці продукції на оптимальний обсяг відповідного виду продукції, тобто буде нелінійною. Отже, маємо задачу нелінійного програмування.

Також добре відома транспортна задача стає нелінійною, якщо вартість перевезення одиниці товару залежить від загального обсягу перевезеного за маршрутом товару. Тобто коефіцієнти при невідомих у цільовій функції, що в лінійній моделі були сталими величинами, залежатимуть від значень невідомих (отже, самі стають невідомими), що знову приводить до нелінійності у функціоналі.

І нарешті, будь-яка задача стає нелінійною, якщо в математич­ній моделі необхідно враховувати умови невизначеності та ризик. Як показник ризику часто використовують дисперсію, тому для врахування обмеженості ризику потрібно вводити нелінійну функцію в систему обмежень, а мінімізація ризику певного процесу досягається дослідженням математичної моделі з нелінійною цільовою функцією.

Загальна задача математичного програмування формулюється так: знайти такі значення змінних xj , щоб цільова функція набувала екстремального (максимального чи мінімального) значення:

(7.1)

за умов:

( ); (7.2)

. (7.3)

Якщо всі функції та , є лінійними, то це задача лінійного програмування, інакше (якщо хоча б одна з функцій є нелінійною) маємо задачу нелінійного програмування.


Читайте також:

  1. Алгоритм розв’язання задачі
  2. Алгоритм розв’язання розподільної задачі
  3. Алгоритм розв’язування задачі
  4. Алгоритм розв’язування задачі
  5. Алгоритм розв’язування задачі
  6. Алгоритм розв’язування задачі
  7. Алгоритм розв’язування задачі
  8. Алгоритм розв’язування задачі
  9. Алгоритм розв’язування задачі оптимізації в Excel
  10. Аналіз інформації та постановка задачі дослідження
  11. Безпосереднє програмування відеопам'яті
  12. Бюджет як економічна і правова категорія




Переглядів: 1121

<== попередня сторінка | наступна сторінка ==>
 | 

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.005 сек.