![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
ТА ЧАСОВИМИ ХАРАКТЕРИСТИКАМИЗВ'ЯЗОК МIЖ ОПЕРАТОРНИМИ, ЧАСТОТНИМИ
11.1 Зв'язок мiж операторною характеристикою кола i зображеннями часових характеристик
Нехай на входi ЛЕК дiє коливання 1. Якщо
Вираз (11.1) визначає операторний спосiб знаходження перехiдної характеристики. 2. Якщо
У формулi (11.2) пiдiнтегральна функцiя вiдмiнна вiд нуля тiльки там, де не дорiвнює нулю дельта-функцiя
Отже
Приклад. Для кола (рис.10.1а) розглянемо переходи вiд
Для знаходження iмпульсної характеристики В даному прикладi степенi полiномiв чисельника i знаменника однаковi, тому доцiльно знизити степiнь чисельника, видiливши цiлу частину. Тодi
Згiдно з таблицею оригiналiв матимемо:
11.2 Зв'язок мiж часовими та частотними характеристиками
Такий зв'язок встановлюється на основi формули
Цi спiввiдношення можна записати для iмпульсної характеристики:
Оскiльки
Для переходу вiд операторних характеристик до частотних зробимо замiну змiнних:
пряме однобiчне перетворення Фур'є; а (8.7) перетворюється у
обернене перетворення Фур'є. (Величину j у межах iгноруємо, оскiльки iнтегрування здiйснюється по Отже, для всiх тих функцiй, для яких iснує однобiчне перетворення Фур'є (11.5), останнє представляє собою границю, до якої прямує перетворення Лапласа вiд цiєї функцiї, якщо дiйсна частина змiнної Тодi при
операторна передатна функцiя
а зображення реакцiї
Зробимо аналогiчну замiну
Порiвняння (11.10) з (11.7) показує, що Отже, часова (iмпульсна) характеристика кола Цей факт доводить, що iмпульсна характеристика однозначно визначає частотнi характеристики кола i навпаки. Оскiльки за відомою iмпульсною характеристикою можна знайти перехiдну характеристику, то Будь-яка змiна частотних характеристик призводить до вiдповiдної змiни часових характеристик, i навпаки. В найпростiшому випадку частотнi характеристики можуть пропорцiйно змiнюватися, тобто "розтягуватися" або "стискатися" за частотою. "Стискання" АЧХ в a разiв викликає "розтягування" Рисунок 11.1
11.3 Граничнi спiввiдношення мiж часовими та частотними характеристиками кола
Для оцiнки зв'язку мiж часовими та частотними характеристиками електричних кiл знайдемо також спiввiдношення мiж граничними значеннями часових характеристик (при У математицi доведено спiввiдношення
Нехай
Пiдставимо (11.13) до (11.12)
Як було показано вище, вiд операторної характеристики можна перейти до частотної замiною
На основi формули (11.14) можна записати по двi рiвностi для лiвої та правої частин:
Тодi одержимо
Приклад. Визначимо частотну i часовi характеристики для кола, яке складається з послiдовно з’єднаних iндуктивностi L i опору R. Вважатимемо вхiдну та вихiдну напруги дією та реакцiєю, вiдповiдно (рис.11.2а). Операторна передатна характеристика для цього кола має вигляд:
Комплексна передатна характеристика
Амплiтудно-частотна характеристика
а) б) в)
Рисунок 11.2
Графiк АЧХ зображено на рис.11.2б. Знайдемо смугу пропускання для даного кола. За визначенням, смуга пропускання - дiапазон частот, на межах якого напруга (струм) або коефiцiєнт передачi зменшується до рiвня 0,707 вiд максимуму. Враховуючи, що для кола першого порядку
Отже, для кола першого порядку справедливе спiввiдношення, згiдно з яким добуток смуги пропускання на сталу часу є величина постiйна i дорiвнює одиницi. Нагадаємо, що для кола другого порядку цей добуток дорiвнює двом. Отже, пiдтверджується важливий висновок щодо iснування тісного зв'язку мiж смугою пропускання та сталою часу (тобто мiж часовими та частотними характеристиками). Визначимо перехiдну характеристику:
Скориставшись теоремою розкладання, отримуємо
Тодi Графiк перехiдної характеристики зображено на рис 11.2в. Маючи вирази для Читайте також:
|
||||||||
|