![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів Контакти
Тлумачний словник |
|
|||||||
Механізм синтезу АТФ при перенесенні електронівКоефіцієнт Р/О та енергетичний баланс Аналіз окисно-відновних потенціалів (див. табл. 6.2) показує, що у дихальному ланцюгу є тільки три етапи окиснення, на яких вивільнюється стільки енергії, скільки міститься в одному макроергічному зв'язку. При перенесенні двох протонів від НАДН на кисень тільки три електронні переходи можуть бути спряжені з фосфорилюванням АДФ у АТФ. Такий зв'язок окиснення та фосфорилювання виражають у вигляді коефіцієнта Р/О. Р/О — це кількість молекул АТФ, які утворюються в розрахунку на один атом кисню. У мітохондріальному дихальному ланцюгу цей коефіцієнт дорівнює трьом, якщо донором електронів служить НАДН, і двом, якщо донором електронів є ФАД. Відомі навіть пункти утворення АТФ (див. табл.6.2): дегідрування НАДН, окиснення цитохрому b та окиснення цитохрому а. У бактерій дуже часто є тільки два пункти фосфорилювання. Такими пунктами у Е. соlі є дегідрування НАДН та окиснення одного з цитохромів. Тривалий час вважалося, що фосфорилювання при перенесенні електронів у бактерій є менш ефективним, ніж у еукаріот. Проте за останніми дослідженнями можна зробити висновок, що деякі аеробні бактерії здатні окиснювати НАДН через дихальний ланцюг з відношенням Р/О, що дорівнює трьом. Знаючи співвідношення Р/О, можна скласти енергетичний баланс для окиснення глюкози. Наприклад, припустимо, що глюкоза катаболізується за гліколітичним шляхом. У цьому разі на 1 моль використаної глюкози кількість утворених відновлю-вальних еквівалентів (НАДН) становить (див. рис.6.7): при окисненні глюкози до пірувату — 2 моль НАДН; при дегідруванні пірувату — 2 моль НАДН; у циклі трикарбонових кислот — 2x3 = 6 моль НАДН і 2 моль ФАД. При Р/О, рівному 3, кількість АТФ становитиме: 10 х 3 + 2 х 2 = 34 моль АТФ. Якщо до цього добавити 2 моль АТФ, які синтезуються у гліколізі, та 2 моль, які утворюються при окисненні 2-оксоглутарату, одержимо 34 + 4 = 38 моль АТФ. При Р/О, рівному 2, кількість АТФ становить: 10 х 2 + 2 х 1 + 4 = 26 моль. Як синтезується АТФ при перенесенні електронів у дихальному ланцюгу? Звідки береться енергія, яка потім акумулюється в макроергічних зв'язках АТФ? Яким є механізм синтезу АТФ при перенесенні електронів? Відповідь на ці запитання дає хіміо-осмотична гіпотеза, запропонована англійським ученим П. Мітчелом у 1961 р. Основні її положеннями такі (рис. 6.8): мембрана, в якій локалізований дихальний ланцюг, є непроникною для протонів та гідроксильних іонів; віддані субстратами відновлювальні еквіваленти переносяться на плазматичну мембрану чи на внутрішню мембрану мітохондрій. Взаєморозміщення компонентів дихального ланцюга у мембрані є таким, що при транспорті електронів від субстрату до кисню протони зв'язуються всередині мембрани, а вивільнюються назовні. Рис. 6.8. Хіміо-осмотична гіпотеза окислювального фосфорилювання в мітохондріях: а — окиснення НАДН у дихальному ланцюгу супроводжується виділенням протонів із внутрішньомітохондріального простору; б — наслідком є встановлення градієнта рН і мембранного потенціалу; в — АТФ-синтаза орієнтована у мембрані таким чином, що протони вловлюються гідроксильними іонами всередині, а іони гідроксилу — протонами зовні
Можна уявити, що електрони у мембрані проходять зигзагоподібний шлях і при цьому переносять протони зсередини назовні. Так, окиснення НАДН у дихальному ланцюгу супроводжується виділенням протонів на зовнішньому боці мембрани (рис. 6.8, а); наслідком такої транслокації протонів є встановлення на мембрані градієнта рН (^рН) та градієнта електричного заряду (^ц) з позитивним потенціалом назовні та негативним всередині (рис. 6.8, б). Отже, внутрішній простір мітохондрій або внутрішній бік плазматичної мембрани у бактерій є електронегативними по відношенню до зовнішнього середовища і відзначаються більш високим рН. Трансмембранна різниця електричного заряду (електричного потенціалу) та хімічного градієнта концентрації іонів водню (градієнт рН) створюють трансмембранний електрохімічний градієнт протонів (протонрушійна сила ^цн , протонний потенціал). Протонрушійна сила може бути зумовлена або тільки градієнтом рН, або тільки градієнтом електричного заряду; для розрядки потенціалу, що виникає в певних місцях плазматичної мембрани (чи внутрішньої мембрани мітохондрій), вбудований H -залежний АТФ-синтазний ферментний комплекс, який каталізує реакції синтезу чи гідролізу АТФ (рис. 6.8, в). Реакція синтезу АТФ спряжена з транспортом протонів за градієнтом протонного потенціалу (з зовнішнього боку мембрани на внутрішній), в результаті чого відбувається його розрядка. Енергія, яка виникає при цьому (енергія, яка генерується протонрушійною силою) і акумулюється у макроергічних зв'язках АТФ. Реакція гідролізу АТФ супроводжується перенесенням протонів проти градієнта, в результаті чого зовні мембрани накопичуються протони і утворюється або збільшується ^цн . Відбувається взаємне перетворення двох форм енергії: ^цн <-> АТФ. Отже, можна сказати, що АТФ-синтазний комплекс відіграє роль "протонного насоса". Слід зазначити, що енергія протонрушійної сили використовується не тільки для синтезу АТФ. Ця форма енергії забезпечує багато які процеси, локалізовані на мембрані у бактерій: активний транспорт, рух джгутиків, зворотне перенесення електронів та ін. Для деяких процесів ця форма енергії зручніша, ніж АТФ, тому що енергія протонрушійної сили не міститься у вигляді певних порцій, як в АТФ, тому не існує нижньої межі для її утворення. Вона може утворюватись і споживатись в умовах, коли синтез АТФ є неможливим. Отже, у мікроорганізмів існує дві форми енергії: енергія у вигляді АТФ та енергія протонрушійної сили. АТФ утворюється при субстратному фосфорилюванні та фосфорилюванні при перенесенні електронів. Енергія протонрушійної сили генерується під час транспорту електронів у дихальному ланцюгу або у процесі гідролізу АТФ за участю АТФ-синтазного ферментного комплексу. Читайте також:
|
||||||||
|