Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Головні напруження та головні площадки.

В курсі “Опір матеріалів” було показано, що при плоскому напруженому стані в точці існують площадки, на яких діють лише тільки нормальні напруження, а дотичні відсутні. Такі площадки називають головними площадками, а відповідні нормальні напруження – головними напруженнями.

Аналогічні площадки та напруження існують і при об’ємному напруженому стані.

Припустимо, що нормаль до головної площадки утворює з координатними осями x, y, z кути, косинуси яких дорівнюють , m, n, при цьому повинна виконуватися геометрична умова:

. (2.2)

 

Головні напруження на цій площадці позначимо через σ, проекції якого на осі x, y, z будуть визначатися рівняннями:

(2.3)

 

З іншого боку, ці ж самі складові можуть бути виражені через напруження σx, τxy, …. ґрунтуючись на рівняннях (2.1). Оскільки ліва частина рівнянь (2.1) та (2.3) описує одне і теж саме, то ми можемо прирівняти праві частини цих залежностей, а саме:

(2.4)

 

Представимо останню систему рівнянь в наступному вигляді:

(2.5)

 

Отримана однорідна система рівнянь не передбачає тривіального розв’язку = m = n = 0, оскільки він суперечить умові (2.2). Для існування інших розв’язків цієї системи, при яких хоча б один з направляючих косинусів був би відмінний від нуля, потрібно, щоб визначник системи рівнянь (2.5) дорівнював нулю, тобто:

 

(2.6)

 

Розкриємо визначник:

 

 

 

Після скорочення та групування за ступенями σ отримаємо кубічне рівняння:

 

 

 

або в скороченому вигляді:

 

(2.7)

де

 

(2.8)

 

 

Рівняння (2.7) називають характеристичним рівнянням відносно σ. Розв’язок цього рівняння дає три корені: σ1, σ2, σ3; всі вони будуть дійсними. Найбільший за алгебраїчним значенням корінь позначають σ1, а найменший – σ2. Таким чином, в кожній точці напруженого тіла завжди може діяти три головних напруження:

 

Підставимо одне зі значень головних напружень σі в рівняння (2.5). Розв’язуючи після цього будь-які два зі вказаних рівнянь сумісно з рівнянням (2.2), отримаємо спрямовуючи косинуси і, mі, nі головних площадок. Детальне дослідження косинусів, отриманих для кожного головного напруження, показує, що головні площадки взаємно ортогональні одна до одної.

Величини головних напружень не залежать від розташування координатних осей x, y, z. Дійсно, якщо навколо заданої точки вирізати декілька елементарних паралелепіпедів з різним напрямком граней і підставити величини складових напружень для кожного з паралелепіпедів в рівняння (2.7), то для усіх паралелепіпедів повинні бути отримані одні і ті ж величини головних напружень. Тоді, корні кубічного рівняння (2.7) не залежать від вибору координатної системи і коефіцієнти рівняння повинні зберігати сталі значення при перетвореннях осей системи координат, тобто вони є інваріантами. В зв’язку з цим, величини І1, І2, І3 носять назву, відповідно першого, другого та третього інваріантів напруженого стану. Останні можна виразити через головні напруження, для чого в формулах (2.8) дотичні напруження потрібно прирівняти до нуля, а нормальним присвоїти індекси головних напружень, тобто:

(2.9)

 

В теорії напружень інваріанти слід розглядати як основні характеристики напруженого стану в точці, а складові напружень, в наслідок прив’язки до осей координат, як додаткові.

Аналізуючи розглянуте питання можна стверджувати, що напружений стан в точці визначається головними напруженнями та орієнтацією головних площадок.

 

 


Читайте також:

  1. Базові (головні, стратегічні) психологічні проблеми управління.
  2. Визначення втрат попереднього напруження
  3. Визначення зусилля попереднього обтиску і величини попереднього напруження
  4. Виробництво. Головні чинники зростання ефективності виробництва.
  5. Головні визначення – безпека, загроза, небезпека, надзвичайна ситуація, ризик.
  6. Головні визначення – безпека, загроза, небезпека, надзвичайна ситуація, ризик.
  7. Головні властивості темпераменту.
  8. Головні елементи зовнішньої торгівлі — експорт і імпорт.
  9. Головні елементи світової економіки
  10. Головні елементи світової економічної системи
  11. Головні елементи та об’єкти професійної орієнтації
  12. Головні етапи кількісного аналізу та оцінювання ризику. Методичні підходи до визначення ризику.




Переглядів: 3350

<== попередня сторінка | наступна сторінка ==>
Основними суб’єктами МЕВ є фізичні та юридичні особи, держави та міжнародні організації. | Тензор напружень. Найбільші дотичні напруження.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.01 сек.