Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Економічна інтерпретація прямої та двоїстої задач лінійного програмування

Самостійна роботи №5 – Приклади застосування теорем двоїстості для знаходження оптимальних планів задач лінійного програмування

Приклади застосування теорії двоїстості для знаходження оптимальних планів прямої та двоїстої задач [2, с.75-82],[3, с.122-128].

2. Вітлінський В.В., Наконечний С.І., Терещенко Т.О. Математичне програмування: Навчально-методичний посібник для самост. вивч.дисц. – 2-е вид., без змін. – К.: КНЕУ, 2006. – 248 c.

3. Наконечний С. І., Савіна С. С. Математичне програмування: Навч. посіб. – К.: КНЕУ, 2003. – 452 с.

 

Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.

Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі (п.2.2.1).

Пряма задача:

(5.1)

за умов:

(5.2)

. (5.3)

Необхідно визначити, яку кількість продукції кожного j-го виду необхідно виготовляти в процесі виробництва, щоб максимізувати загальну виручку від реалізації продукції підприємства. Причому відомі: наявні обсяги ресурсів – ; норми витрат і-го виду ресурсу на виробництво одиниці j-го виду продукції – , а також – ціни реалізації одиниці j-ої продукції.

Розглянемо тепер цю саму задачу з іншого погляду. Допустимо, що за певних умов доцільно продавати деяку частину чи всі наявні ресурси. Необхідно визначити ціни ресурсів. Кожному ресурсу поставимо у відповідність його оцінку . Умов­но вважатимемо, що – ціна одиниці і-го ресурсу.

На виготовлення одиниці j-го виду продукції витрачається згід­но з моделлю (5.1)—(5.3) m видів ресурсів у кількості відповідно . Оскільки ціна одиниці і-го виду ресурсу дорівнює , то загальна вартість ресурсів, що витрачаються на виробництво одиниці j-го виду продукції, обчислюється у такий спосіб:

.

Продавати ресурси доцільно лише за умови, що виручка, отримана від продажу ресурсів, перевищує суму, яку можна було б отримати від реалізації продукції, виготовленої з тих самих обсягів ресурсів, тобто:

.

Зрозуміло, що покупці ресурсів прагнуть здійснити операцію якнайдешевше, отже, необхідно визначити мінімальні ціни одиниць кожного виду ресурсів, за яких їх продаж є доцільнішим, ніж виготовлення продукції. Загальну вартість ресурсів можна виразити формулою:

.

Отже, в результаті маємо двоїсту задачу:

(5.4)

за умов:

(5.5)

(5.6)

Тобто необхідно визначити, які мінімальні ціни можна встановити для одиниці кожного і-го виду ресурсу , щоб продаж ресурсів був доцільнішим, ніж виробництво продукції.

Зауважимо, що справжній зміст величин – умовні ціни, що виражають рівень «цінності» відповідного ресурсу для даного виробництва. Англійський термін «shadow prices» у літературі перекладають як «оцінка» або «тіньова, неявна ціна». Академік Л.В.Канторович назвав їх об’єктивно обумовленими оцін­ками відповідного ресурсу.

Задача (5.4)-(5.6) є двоїстою або спряженою до задачі (5.1)-(5.3), яку називають прямою (основною, початковою). Поняття двоїстості є взаємним. По суті мова йде про одну і ту ж задачу, але з різних поглядів. Дійсно, не важко переконатися, що двоїста задача до (5.4)-(5.6) збігається з початковою. Тому кожну з них можна вважати прямою, а іншу – двоїстою. Симетричність двох таких задач очевидна. Як у прямій, так і у двоїстій задачі викорис­товують один набір початкових даних: , ; . Крім того, вектор обмежень початкової задачі стає вектором коефіцієнтів цільової функції двоїстої задачі і навпаки, а рядки матриці А (матриці коефіцієнтів при змінних з обмежень прямої задачі) стають стовпцями матриці коефіцієнтів при змінних в обмеженнях двоїстої задачі. Кожному обмеженню початкової задачі відповідає змінна двоїстої і навпаки.

Початкова постановка задачі та математична модель може мати вигляд як (5.1)-(5.3), так і (5.4)-(5.6). Отже, як правило, кажуть про пару спряжених задач лінійного програмування.


Читайте також:

  1. Алгоритм розв’язання задачі
  2. Алгоритм розв’язання розподільної задачі
  3. Алгоритм розв’язування задачі
  4. Алгоритм розв’язування задачі
  5. Алгоритм розв’язування задачі
  6. Алгоритм розв’язування задачі
  7. Алгоритм розв’язування задачі
  8. Алгоритм розв’язування задачі
  9. Алгоритм розв’язування задачі оптимізації в Excel
  10. Аналіз задач і алгоритмів
  11. Аналіз інформації та постановка задачі дослідження
  12. АНАЛІЗ ЛІНІЙНИХ МОДЕЛЕЙ ЕКОНОМІЧНИХ ЗАДАЧ




Переглядів: 1297

<== попередня сторінка | наступна сторінка ==>
 | 

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.015 сек.