Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Позиційні системи числення

Сиcтема числення

Самостійна робота №1

Самостійні 2частина

1. Система счислення

2. Закони булевої алгебри

3. Взаімне співвідношення булевих функцій і логічних схем

4. Феромагнітні елементи

5. Магнітні підсилювачі

6. Магнітні трансформатори

7. Послідовні логічні схеми

8. Дешифратори й індикатори

9. Системи керування імпульсних перетворювачів

10. Поверхневі явища напівпровідника Дослідження схем за допомогою пакету Micro-Cap

11. Запам'ятовувальні пристрої

12. Пристрої збереження та передачі

13. Архітектура ПЕОМ. Принцип мікропроцесорного керування

14. мультивібратори

15. Мікропроцесорні комплекти

16. Система команд мікропроцесора

17. КР580ВМ80. Програма.

18. Пристрої збереження та передачі інформації

19. Безпосереднє адресування

20. Програмований контроль переривань К580ВН59

21. Настройка роботи контролера

22. Контролер прямого доступу до пам’яті КР580ВТ57

23. Програмований послідовний інтерфейс КР580ВВ51

24. Мікропроцесорний комплекс К1810

25. Мікропроцесор К1810ВМ86

26. Організаційна робота мікропроцесора К1810ВМ86

27. Функціонування ЦП

28. Взаємодія вузлів ВМ86

29. Програмування.

30. Архітектура Мікроконтролера PIC


Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Звичайною для нас і загальноприйнятою є позиційна десяткова система числення. Як умовні знаки для запису чисел вживаються цифри.

Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною.

Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.

Найпростішим способом запису натурального числа є зображення його за допомогою відповідної кількості паличок або рисочок. Таким способом можна користуватися для невеликих чисел.

Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D -п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.

 

Загальноприйнятою в сучасному світі є десяткова позиційна система числення, яка з Індії через арабські країни прийшла в Європу. Основою цієї системи є число десять. Основою системи числення називається число, яке означає, у скільки разів одиниця наступного розрядку більше за одиницю попереднього.

 

Загальновживана форма запису числа є насправді не що інше, як скорочена форма запису розкладу за степенями основи системи числення, наприклад

 

130678=1*105+3*104+0*103+6*102+7*101+8

 

Тут 10 є основою системи числення, а показник степеня - це номер позиції цифри в записі числа (нумерація ведеться зліва на право, починаючи з нуля). Арифметичні операції у цій системі виконують за правилами, запропонованими ще в середньовіччі. Наприклад, додаючи два багатозначних числа, застосовуємо правило додавання стовпчиком. При цьому все зводиться до додавання однозначних чисел, для яких необхідним є знання таблиці додавання.

 

Проблема вибору системи числення для подання чисел у пам'яті комп'ютера має велике практичне значення. В разі її вибору звичайно враховуються такі вимоги, як надійність подання чисел при використанні фізичних елементів, економічність (використання таких систем числення, в яких кількість елементів для подання чисел із деякого діапазону була б мінімальною). Для зображення цілих чисел від 1 до 999 у десятковій системі достатньо трьох розрядів, тобто трьох елементів. Оскільки кожен елемент може перебувати в десятьох станах, то загальна кількість станів - 30, у двійковій системі числення 99910=1111100, необхідна кількість станів - 20 (індекс знизу зображення числа - основа системи числення). У такому розумінні є ще більш економічна позиційна система числення - трійкова. Так, для запису цілих чисел від 1 до у десятковій системі числення потрібно 90 станів, у двійковій - 60, у трійковій - 57. Але трійкова система числення не дістала поширення внаслідок труднощів фізичної реалізації.

 

Тому найпоширенішою для подання чисел у пам'яті комп'ютера є двійкова система числення. Для зображення чисел у цій системі необхідно дві цифри: 0 і 1, тобто достатньо двох стійких станів фізичних елементів. Ця система є близькою до оптимальної за економічністю, і крім того, таблички додавання й множення в цій системі елементарні.

 



Читайте також:

  1. I. Органи і системи, що забезпечують функцію виділення
  2. I. Особливості аферентних і еферентних шляхів вегетативного і соматичного відділів нервової системи
  3. II. Анатомічний склад лімфатичної системи
  4. IV. Розподіл нервової системи
  5. IV. Система зв’язків всередині центральної нервової системи
  6. IV. Філогенез кровоносної системи
  7. POS-системи
  8. VI. Філогенез нервової системи
  9. Автододавання та автообчислення.
  10. Автокореляційна характеристика системи
  11. АВТОМАТИЗОВАНІ СИСТЕМИ ДИСПЕТЧЕРСЬКОГО УПРАВЛІННЯ
  12. АВТОМАТИЗОВАНІ СИСТЕМИ УПРАВЛІННЯ ДОРОЖНІМ РУХОМ




Переглядів: 868

<== попередня сторінка | наступна сторінка ==>
Блокінг-генератори. | Закони булевої алгебри

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.