Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Умова пропускання реактивного фільтра (основна нерівність).

Обмежимося розглядом симетричних LC-фільтрів, навантажених характеристичним опором (тільки при цій умові зберігаються розрахункові характеристики фільтра).

Схеми симетричних Т- і П- подібних фільтрів, а також позначення опорів на них зображені на рис. 8.2.

 
 

Прийняті на схемах позначення опорів пліч дозволяють одержати формули, однакові для Т- і П- подібних фільтрів. Співвідношення параметрів пліч у Т- і П- подібних схемах відповідає такому правилу: опори послідовних і паралельних пліч повинні бути повними, тобто дорівнювати Z1 і Z2. Інакше кажучи, у Т- подібній схемі в послідовних плечах повинні бути елементи L/2 і 2C, а в паралельному плечі - L і C. У П- подібній схемі в послідовному плечі - L і C, а в паралельних - 2L і C/2.

Одержимо умову, що визначає смугу пропускання фільтра – так називану основну нерівність фільтра.

Рівняння форми А симетричного чотириполюсника в гіперболічній формі мають вигляд:

 

Коефіцієнт

.

Результат отриманий, виходячи з виразів:

 

Одержимо коефіцієнт А11 за дослідами неробочого ходу і короткого замикання для Т- і П- подібних схем фільтра.

При неробочому ході на вторинних затискачах I2 = 0 і перше рівняння форми А має вигляд:

звідси

Для Т- подібної схеми

звідки .

Для П- подібної схеми

,

звідки .

За рахунок прийнятих позначень опорів пліч вирази для А11 вийшли однаковими для Т- і П- подібної схеми фільтра.

Порівнюючи вирази для А11 у гіперболічній формі й отриманий результат, маємо .

Для ідеальних реактивних фільтрів відношення є дійсною величиною, тому , а .

У зоні прозорості і , тоді .

Оскільки то відкіля

або .

Це і є основна нерівність реактивних фільтрів (умова пропускання реактивних фільтрів), що виконується лише тоді, коли і мають різний знак. Якщо в послідовному плечі включена індуктивність, то в паралельному повинна бути включена ємність і навпаки.

Граничні частоти смуги пропускання (частоти зрізу) визначаються з умов

та .

Частоти зрізу можуть бути отримані по частотній характеристиці вхідного опору фільтра, навантаженого узгодженим опором.

 


Читайте також:

  1. Актуальність і завдання курсу безпека життєдіяльності. 1.1. Проблема безпеки людини в сучасних умовах.
  2. Амплітудно-частотна характеристика, смуга пропускання і загасання
  3. Аналіз та оцінка інвестування в умовах ризику. Якісні та кількісні методи оцінювання проектних ризиків.
  4. Аналітична робота в умовах кризи.
  5. АТ – одна з найбільш зручних форм колективного підприємства в умовах ринкової економіки. Першим АТ вважають створену у 1602 році Голандсько –Ост - Індську компанію.
  6. Атестація робочих місць з шкідливими і небезпечними умовами праці.
  7. Атестація робочих місць за умовами праці
  8. Атестація робочих місць за умовами праці
  9. Атестація робочих місць за умовами праці
  10. Безпека в умовах кримінальної злочинності
  11. Безпека життєдіяльності людини в умовах натовпу
  12. Бетонування в зимових умовах




Переглядів: 823

<== попередня сторінка | наступна сторінка ==>
Основні визначення і класифікація електричних фільтрів. | Характеристичний опір фільтра.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.