Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Тема 4.1 Загальні відомості та класифікація перетворювачів

Зміст

Р.

М. Дрогобич

ЧАСТИНА 2

Основи метрології

Предмету

З

Міністерство освіти і науки України

Дрогобицький механіко-технологічний коледж

та засоби технічного контролю»


М.М.Лазарів. Конспект лекцій з предмету

«Основи метрології та засоби технічного контролю».

 

Рекомендовано до друку цикловою комісією спеціальності _____________

Протокол № ______ від_____________200___р.

Забороняється тиражувати та розповсюджувати без відома автора.


Тема 4.1 Загальні відомості та класифікація перетворювачів
Тема 4.2 Механічні пружні перетворювачі механічних величин
Тема 4.3 Резистивні перетворювачі механічних величин
Тема 4.4 Тензорезистивні перетворювачі механічних величин
Тема 4.5 П'єзоелектричні перетворювачі
Тема 4.6 Ємнісні перетворювачі
Тема 4.7 Електромагнітні перетворювачі
Тема 4.8 Теплові перетворювачі
Тема 4.9 Електрохімічні перетворювачі
Тема 4.10 Гальваномагнітні перетворювачі
Тема 4.11 Перетворювачі оптичного випромінювання
Тема 4.12 Стан та перспективи розвитку первинних перетворювачів
Тема 5.1 Загальні відомості про засоби та методи вимірювань неелектрич-них величин
Тема 5.2 Вимірювання геометричних розмірів
Тема 5.3 Вимірювання механічних зусиль
Тема 5.4 Вимірювання параметрів руху твердих тіл
Тема 5.5 Вимірювання витрат рідин та газів
Тема 5.6 Вимірювання температури
Тема 5.7 Вимірювання хімічного складу та властивостей речовин.
Тема 5.8 Вимірювання параметрів радіації
Перелік використаної літератури

План

Вступ

1. Основні поняття та визначення

2. Класифікація вимірювальних перетворювачів.

 

Про кількість та різноманітність неелектричних величин можна зробити висновок з Міжнародної системи одиниць, що нараховує6 основних (довжина, маса, термодинамічна температура, кількість речовини, сила світла), дві додаткові (плоский кут та тілесний кут), а також близько 150 похідних одиниць фізичних величин.

Сьогодні необхідно вимірювати тисячі неелектричних величин , зокрема параметри технологічних процесів у найрізноманітніших умовах, і неможливо обійтись без найдосконаліших засобів вимірювань. Подальший розвиток космічних досліджень, проникнення вимірювань в області надвисоких чи наднизьких температур та тисків, частот та енергій, вивчення таємниць живого організму, охорона довкілля та праці людини, за яких умови вимірювання стають все складнішими, зумовлюють необхідність створення принципово нових засобів вимірювань і, насамперед, первинних вимірювальних перетворювачів.

 

1. Вимірювальна інформація - це кількісна інформація про властивості фізичних об’єктів (про значення фізичних величин),отримана в результаті вимірювань. Особливість вимірювальної інформації випливає із загального визначення поняття вимірювання як знаходження значення фізичної величини дослідно за допомогою спеціально призначених для цього технічних засобів.

Вимірювальне перетворення – це вимірювальна операція , під час якої вхідна фізична величина перетворюється у вихідну, функціонально з нею зв’язану. Фізичною основою вимірювального перетворення є перетворення та передавання енергії, зокрема перетворення одного виду енергії в інший.


Вимірювальним перетворювачем ( ВП) називають засіб вимірювальної техніки, що реалізує вимірювальне перетворення ( засіб вимірювальної техніки, призначений для вироблення сигналу вимірювальної інформації у формі, зручній для передачі, для подальшого перетворення , оброблення та зберігання, але непридатній для безпосереднього сприйняття спостерігачем).

Вважаємо доцільним звернути увагу на відмінність у поняттях „вимірювальний перетворювач” та „перетворювальний елемент”. ВП як засіб вимірювань має нормовані метрологічні характеристики і виконується звичайно у вигляді окремого засобу певного класу точності. Перетворювальний елемент як частина засобу вимірювань не має окремо нормованих метрологічних характеристик, однак його похибки лімітуються допустимими похибками тих засобів вимірювань, до складу яких він входить.

Вимірювальний перетворювач (перетворювальний елемент), який є першим у колі послідовно з’єднаних перетворювачів, називають первинним.

Поряд з терміном „вимірювальний перетворювач” широко застосовується термін „давач”. Давачем називають вимірювальний перетворювач неелектричної величини, виконаний як конструктивно завершений засіб вимірювань і призначений для розміщення безпосередньо в зоні досліджуваного об’єкта. Треба зауважити, що в ДСТУ 2681 – 94 „Метрологія: терміни та визначення” терміна „давач” немає. Його аналогом, очевидно, можна вважати термін „первинний вимірювальний перетворювач”(„сенсор”).

Основною статичною характеристикою ВП є функція перетворення Y=f(x), яка визначає залежність вихідної величини Y від вхідної X. Відношення вихідної величини до вхідної називають коефіцієнтом перетворення. Загалом К(х)=Y/X є деякою функцією вхідної перетворюваної величини.

 

2. Залежно від характеру вихідної інформації ВП, яка міститись у вихідному енергетичному процесі (сигналі) або вихідному параметрі, розрізняють генераторні та параметричні перетворювачі. До генераторних належать перетворювачі з вихідним сигналом у вигляді енергетичного процесу, наприклад, ним може бути електричний струм, ЕРС, механічна сила чи тиск тощо. Параметричними є перетворювачі, в яких зміна вхідної вимірювальної величини приводить до зміни їх вихідних параметрів – електричного опору, ємності, індуктивності, механічної пружності, магнітної проникності тощо. Для отримання вихідної інформації параметричних перетворювачів у вигляді сигналу потрібні додаткові джерела енергії.

Залежно від природи вхідної та вихідної величин ВП поділяють на такі групи: перетворювачі електричних величин в електричні, перетворювачі неелектричних величин в неелектричні, перетворювачі електричних величин в неелектричні та перетворювачі неелектричних величин в електричні.

За фізичними закономірностями, покладеними в основу принципу дії, ВП можуть бути поділені на такі групи:

1. Механічні пружні перетворювачі. В основу принципу дії таких перетворювачів покладені залежності між вхідними механічними зусиллями і викликаними ними переміщеннями чи механічними напруженнями в матеріалі чутливого елемента, що визначаються його пружними властивостями.

2. Резистивні перетворювачі (механічних величин). Носієм вимірювальної інформації у резистивних перетворювачах механічних величин є електричний опір, зміна якого може бути наслідком переміщення повзунка реостата чи реохорда в реостатних та реохорд них перетворювачах або ж внаслідок тензоефекту в тензорезистивних перетворювачах.

3. Ємнісні перетворювачі. В основу принципу дії ємнісних перетворювачів покладена залежність ємності конденсатора від відстані між його електродами, площі їх перекриття чи діелектричної проникності середовища між електродами, коли відстань, площа перекриття (кут повороту) чи діелектрична проникність є мірою вимірюваної величини.

4. П’єзоелектричні перетворювачі. До п’єзоелектричних належать перетворювачі, принцип дії яких оснований на використанні явища поляризації п’єзоелектрика внаслідок дії на нього механічних зусиль.

5. Індуктивні перетворювачі. Це перетворювачі, в яких використовується залежність повного електричного опору намагнічувального кола від значення комплексного магнітного опору магнітного кола перетворювача, який може бути результатом зміни повітряного проміжку в магнітному колі перетворювача або результатом зміни магнітних властивостей феромагнетику внаслідок дії на нього механічних зусиль, як в індуктивних магнітопружних перетворювачах.

6. Взаємоіндуктивні (трансформаторні) перетворювачі. Принцип дії оснований на використанні залежності магнітного потоку і відповідно наведеної у вторинній обмотці ЕРС (при змінних намагнічувальних ампервитках) від значення комплексного магнітного опору магніто проводу, який, як і в індуктивних перетворювачах, може змінюватись зі зміною повітряного проміжку чи магнітних властивостей феромагнетику, спричинених його механічною деформацією.

7. Індукційні перетворювачі. Їх принцип дії оснований на використанні явища електромагнітної індукції. Вхідними (вимірюваними ) величинами таких перетворювачів можуть бути швидкість зміни магнітного потоку або швидкість лінійного чи кутового переміщення вимірювальної котушки.

8. Гальваномагнітні перетворювачі. Їх принцип дії базується на використанні гальваномагнітних ефектів Гауса і Холла. Суть ефекту Гауса полягає в зміні електричного опору провідника чи напівпровідника при проходженні через нього електричного струму та одночасної дії на нього магнітного поля, а ефекту Холла - в появі за названих умов поперечної різниці потенціалів (ЕРС Холла). Основними різновидами гальваномагнітних перетворювачів є відповідно магніторезистивні перетворювачі та перетворювачі Холла.

9. Теплові перетворювачі. Тепловими називають перетворювачі, в основу принципу роботи яких покладені фізичні ефекти, що визначаються тепловими процесами. Теплові перетворювачі – це, переважно, перетворювачі температури. Правда, непрямо вони можуть використовуватись для перетворень інших величин, що проявляються через теплові процеси, наприклад, хімічного складу, концентрацій, швидкості руху газів чи рідин тощо. Є дві основні групи теплових перетворювачів, які широко застосовуються у вимірювальній техніці. Це – терморезистивні, що використовують залежність опору матеріалу від температури та термоелектричні, в основу принципу дії яких покладена залежність термо-ЕРС термопари від різниці температур.

10. Електрохімічні перетворювачі. Принцип дії електрохімічних перетворювачів оснований на залежності електропровідності електролітичної комірки від складу, концентрації, температури чи інших параметрів досліджуваного розчину (електрохімічні резистині перетворювачі); залежності електродних потенціалів від активності водневих іонів (гальванічні перетворювачі рН-метрів); а також залежності різниці електричних потенціалів на границі розділу твердої та рідкої фаз від швидкості переміщення розчину (електрокінетичні перетворювачі).

11. Оптичні перетворювачі. В основу принципу дії оптичних перетворювачів покладена залежність параметрів оптичного (світлового чи теплового) випромінювання від значення вимірюваної (перетворюваної) величини. Остання може діяти безпосередньо на джерело випромінювання, змінюючи інтенсивність його випромінювання, як в оптичних пірометрах, або ж на оптичний канал, впливаючи на параметри оптичного потоку, як, наприклад, у вимірювача оптичної щільності.

12. Перетворювачі іонізаційного випромінювання. Принцип дії таких перетворювачів оснований на перетворенні інтенсивності іонізуючого чи рентгенівського випромінювання. У перетворювачах іонізаційного випромінювання вихідна електрична величина функціонально зв’язана з інтенсивністю іонізаційного чи рентгенівського випромінювання, яка є мірою досліджуваної величини.


Контрольні запитання:

 

1. Що розуміють під вимірювальною інформацією?

2. Що розуміють під вимірювальним перетворенням?

3. Що називається вимірювальним перетворювачем?

4. Що називається давачем?

5. Які вимірювальні перетворювачі називаються генераторними? Наведіть приклад.

6. Які вимірювальні перетворювачі називаються параметричними? Наведіть приклад.

7. Принцип дії механічних пружніх перетворювачів.

8. Принцип дії резистивних перетворювачів.

9. Принцип дії ємнісних перетворювачів.

10. Принцип дії п’єзоелектричних перетворювачів.

11. Принцип дії індуктивних перетворювачів.

12. Принцип дії взаємоіндуктивних (трансформаторних) перетворювачів.

13. Принцип дії індукційних перетворювачів.

14. Принцип дії гальваномагнітних перетворювачів.

15. Принцип дії теплових перетворювачів. Терморезистивні та термоелектричні перетворювачі.

16. Принцип дії електрохімічних перетворювачів.

17. Принцип дії оптичних перетворювачів.

18. Принцип дії перетворювачів оптичного випромінювання.



Читайте також:

  1. II. ЗАГАЛЬНІ ПОЛОЖЕННЯ.
  2. II. Класифікація видатків та кредитування бюджету.
  3. IX. Відомості про військовий облік
  4. IX. Відомості про військовий облік
  5. V Практично всі психічні процеси роблять свій внесок в специфіку організації свідомості та самосвідомості.
  6. V. Класифікація і внесення поправок
  7. V. Класифікація рахунків
  8. А. Структурно-функціональна класифікація нирок залежно від ступеню злиття окремих нирочок у компактний орган.
  9. Адміністративні провадження: поняття, класифікація, стадії
  10. Аналіз двотактних перетворювачів напруги
  11. Аналітичні процедури внутрішнього аудиту та їх класифікація.
  12. Банківська платіжна картка як засіб розрахунків. Класифікація платіжних карток




Переглядів: 3933

<== попередня сторінка | наступна сторінка ==>
Праска УТП-2ЕП. | Перетворювачі механічних зусиль

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.006 сек.