Определим ОДР. Ограничение-равенство (4) допускает только точки, лежащие на прямой (4). Подставим точку (0;0) в ограничение (3), получим , что является ложным неравенством, поэтому стрелкой (или штрихованием) обозначим полуплоскость, не содержащую точку (0;0), т.е. расположенную выше прямой (3). Аналогично определим и укажем допустимые полуплоскости для остальных ограничений (см. рис.2.3). Анализ полуплоскостей, допустимых остальными ограничениями-неравенствами, позволяет определить, что ОДР – это отрезок АВ.
Строим вектор из точки (0;0) в точку (-2;-1). Для поиска минимума ЦФ двигаем целевую прямую против направления вектора . Точка В – это последняя точка отрезка АВ, через которую проходит целевая прямая, т.е. В – точка минимума ЦФ.
Определим координаты точки В из системы уравнений прямых ограничений (3) и (4)
.
Минимальное значение ЦФ равно
.
При поиске точки максимума ЦФ будем двигать целевую прямую по направлению вектора . Последней точкой отрезка АВ, а значит, и точкой максимума будет А. Определим координаты точки А из системы уравнений прямых ограничений (1) и (4)