МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||
ТМО різних методичних підходів до формування поняття натурального числа і нуля. Натуральний ряд чисел та особливості десяткової позиційної системи числення.2. У пояснювальній записці до програми з математики вказано, що основою початкового курсу математики є арифметика цілих невід'ємних чисел. Це означає, що основним завданням початкового курсу математики є формування у дітей поняття про цілі невід'ємні числа та дії над ними. Першою темою із арифметичної частини програми є тема "Нумерація", яка розглядається в кожному із концентрів: "Десяток", "Сотня", "Тисяча" і "Багатоцифрові числа". Слово нумерація походить від латинського numeratio або numero, дослівний переклад яких "лічу" або "лічити". Будемо на боці тих науковців і методистів (М.Бантова, М.Богданович, М.Моро, А.Пишкало та ін.), які під нумерацією розуміють способи називання, читання та записування чисел. Розрізняють усну і письмову нумерацію. Незалежно від концентру при вивченні нумерації чисел діти ознайомлюються з операціями лічби і вимірювання, читанням і написанням чисел, співвідношенням між числом і цифрою, з різними способами одержання чисел (додаванням 1 до даного числа, відніманням 1 від даного числа, як суми двох доданків), з послідовністю цілих невід'ємних чисел від 0 чи 1 до найбільшого числа у цьому концентрі, з принципом побудови натурального ряду чисел, з властивостями множини натуральних чисел, з десятковим складом чисел, з кількісним і порядковим значенням чисел. Які теорії цілих невід’ємних чисел Ви знаєте? Із курсу математики відомо, що існує принаймні три теорії цілих невід'ємних чисел: 1) кількісна або теоретико-множинна, в якій число трактується як спільна властивість класу скінченних еквівалентних множин; 2) порядкова або аксіоматична, в якій натуральне число визначається з допомогою системи аксіом та операції “слідувати за..."; 3) теорія, яка розглядає натуральне число як результат вимірювання величини. Аналіз цих теорій свідчить, що основними поняттями у кожній з них є “число”, “величина”, “відношення”, “множина”. Залежно від порядку їх слідування можна побудувати різні курси математики у початкових класах. Відповідно до цих теорій існують різні теоретико-методичні підходи до формування поняття натурального числа і нуля. Залежно від того, яка з теорій покладена в основу, будуються підручники і розробляється методика формування поняття натурального числа і нуля у молодших школярів на уроках математики. Формування у дітей цих понять є одним із найважливіших завдань початкового курсу математики. Цей процес відбувається дуже поступово протягом всього вивчення математики в середній школі, а інколи навіть і протягом всього життя. Для правильного проведення такої роботи істотне значення має з'ясування питання про те, як виникає та розвивається поняття числа у дітей. Залежно до розуміння суті цього процесу по-різному розв'язуються проблеми методики навчання математики у початкових класах. Розглянемо деякі з таких підходів. У нині діючих підручниках М.Богдановича вибрано такий порядок слідування вказаних понять: число, величина, відношення, множина (див. схему 1.). Отже, в основу реалізованого у підручниках М.Богдановича курсу математики покладено теоретико-множинний або кількісний підхід, а поняття числа формується в результаті розгляду скінченних предметних множин і операцій над ними. Це означає, що явно розглядаються поняття “число” і “величина”, а “відношення” і “множина” - неявно. Два останніх терміни навіть не вводяться. Разом з тим, при такому підході формування поняття числа було б неповним, якби не використовувалися дві інші теорії (Які саме?). Саме тому діти знайомляться з порядковим значенням числа і одержують числа в результаті вимірювання величин. У програмі розробленій під керівництвом П.Гальперіна, введенню числа передує пропедевтика, яка передбачає поряд з відпрацюванням поняття міри проведення роботи з формування таких основних понять як "взаємно однозначна відповідність", "дорівнює", "більше", "менше". Формування поняття числа розпочинається з формування міри: введення міри з ретельною якісною і кількісною її диференціацією, виділення за допомогою міри окремих параметрів об’єктів, перетворення конкретних значень величини в множину, взаємно однозначна відповідність цих множин, їх порівняння і, нарешті, введення одиниці, а потім решти чисел та дій над ними [С-11,6].
Читайте також:
|
|||||||||||||||
|