Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Операція ділення з остачею на множині цілих невід’ємних чисел.

Таблиця № 3.1.

Х

Визначення частки цілого невід’ємного числа на натуральне число через розбиття множини на класи, що попарно не перетинаються. Ділення на множині цілих невід’ємних чисел, зв'язок ділення з множенням. Теореми про існування та єдиність частки.

B

Теорема 7 (переставний або комутативний закон множення): для будь-яких цілих невід’ємних чисел а і b справджується рівність а×b=b×а.

Теорема 8 (сполучний або асоціативний закон множення): для будь-яких цілих невід’ємних чисел а, b і с справджується рівність (а×b)×с=а×(b×с).

Доведення теорем 7 і 8 проводиться аналогічно до доведення теореми 9, а тому пропонуємо провести їх самостійно. Для доведення теорем 7 і 8 виконайте завдання № 3 для самостійної роботи.Наступна теорема 9 пов’язує операції додавання і множення.

Теорема 9 (лівий та правий дистрибутивні або розподільні закони множення відносно додавання): для будь-яких цілих невід’ємних чисел а, b і с справджуються рівності: 1) с×(а+b)=с×а+с×b; 2) (а+b)×с=а×с+b×с.

Доведення:

Для доведення рівності 2 використаємо означення добутку через суму однакових доданків:

(а+b)×с=(а+b)+(а+b)+(а+b)+...(а+b)=(а+а+а+...+а)+(b+b+b+...+b)=ас+bс

с с с

Отже, (а+b)×с=а×с+b×с. Рівність (1) пропонуємо довести самостійно. Теорему доведено.

Прийняті нами означення суми і різниці можна поширити на множину цілих невід’ємних чисел, де Z0=N0=NÈ{0}. Оскільки 1) АÈÆ=ÆÈА=А, то а+0=0+а=а; 2) А\Æ=А, а тому а-0=а.

 

9. На практиці досить часто доводиться розв'язувати задачі таких двох видів: 1) дано скінченну множину А і її слід розбити на певне число еквівалентних між собою підмножин без спільних елементів, а потім визначити потужність кожної із цих підмножин. Такі задачі називають задачами на ділення на рівні частини; 2) дано власну підмножину В скінченної множини А і необхідно визначити скільки всіх підмножин без спільних елементів, еквівалентних множині В, має множина А. Такі задачі називають задачами на ділення на вміщення.

Таким чином, в обох випадках множина А повинна бути представлена у вигляді об'єднання скінченної кількості еквівалентних між собою множин:А=В1ÈВ2ÈВ3È...ÈВk, причому В123~...~Вk. При розв'язування першої задачі (задачі на ділення на рівні частини) завдання полягає в тому, щоб визначити потужність кожної із еквівалентних підмножин. Розв'язування другої задачі (задачі на ділення на вміщення) зводиться до відшукання кількості таких еквівалентних між собою підмножин. Якщо перейти до характеристики потужності множини А і вказаних підмножин, тобто позначити n(А)=а, n(В1)=n(В2)=n(В3)=...=n(Вk)=x, то ми приходимо до поняття нової арифметичної операції на множині цілих невід’ємних чисел, а саме до операції ділення на натуральне число. У першому випадку число а=n(А) слід представити у вигляді суми відомого числа b однакових доданків, кількість яких (х) необхідно знайти. При розв'язуванні другої задачі число а слід представити у вигляді суми невідомого числа (х) однакових доданків, кожен з яких дорівнює b. Символічно це можна записати в таблиці (див. таблицю № 3.1.).

 

а=х+х+х+...+х=х×b   b а=b+b+b+...+b=b×х
 
 


 

 

Отже, розв'язування задачі на ділення на рівні частини зводиться до відшукання за відомим добутком і відомим другим множником невідомого першого множника, а задачі на ділення на вміщення – до відшукання за відомим добутком і відомим першим множником невідомого другого множника (див. таблицю № 3.1.). Обидві задачі розв'язуються дією, оберненою до дії множення, а саме: х=а:b.

Тепер можна ввести такі означення.

Означення 1: часткою натуральних чисел а і b називається число елементів кожної із еквівалентних підмножин, на які розбито множину А, де а=n(А) і b – число підмножин, на які розбито множину А.

Означення 2: часткою натуральних чисел а і b називається число еквівалентних підмножин, на які розбито множину А, де а=n(А) і b=n(В1)=n(В2)=n(В3)=...=n(Вх).

Визначаючи частку натуральних чисел, ми використовували операцію розбиття множини на підмножини, які попарно не перетинаються. Разом з тим, ми показали, що в обох випадках приходимо до дії, оберненої до дії множення. Отже, можна ввести таке означення.

Означення 3: часткою від ділення натуральних чисел а і b називається таке третє натуральне число а:b, яке в добутку з числом b дає нам число а, тобто b×(а:b)=а.

Число а називають діленим, число b – дільником, а число а:b – часткою. Операція, за допомогою якої знаходиться частка, називається операцією ділення на множині натуральних чисел. Зазначимо, що всі прийняті нами означення рівносильні між собою, але в жодному із них не говориться про існування та єдиність операції ділення. Саме тому, розглянемо це питання. Дія ділення зводиться до розв'язування лінійного рівняння bх=а. Із курсу математики середньої школи відомо, що це рівняння: 1) при а=b=0 набуває вигляду 0×х=0 і має нескінченну множину розв’язків. Отже, вираз 0:0 не має жодного конкретного значення, тобто не має смислу. Саме тому, ділити на нуль не можна!; 2) при а=0 і b¹0 рівняння набуває вигляду b×х=0 і має єдиний розв’язок х=0; 3) при а¹0 і b¹0 рівняння bх=а матиме розв’язок на множині натуральних чисел тоді, коли а ділиться націло на b. Для відповіді на запитання про існування частки слід довести наступну теорему.

Теорема 10 (про існування частки): частка цілого невід’ємного числа а на натуральне число b існує тоді і тільки тоді, коли а ділиться націло на b.

Доведення:

Доведення теореми буде складатися із двох частин: у першій слід довести достатню умову, а у другій – необхідну умову існування частки. Доведемо достатню умову, яка формулюється так: “якщо ціле невід’ємне число а ділиться націло на натуральне число b, то частка а:b існує”.

За умовою а ділиться націло на b. Це означає: існує таке число с, що b×с=а. Отже, с=а:b. Достатню умову доведено.

Доведемо необхідну умову, яка формулюється так: “якщо частка а:b існує, то число а ділиться націло на b”. За умовою частка а:b існує. Це означає, що b×(а:b)=а, тобто число а ділиться націло на число b. Необхідну умову доведено. Таким чином, теорему доведено повністю.

Теорема 11 (про єдиність частки): якщо частка від ділення цілого невід’ємного числа а на натуральне число b існує, то вона єдина.

Доведення:

Доведення цієї теореми проведемо методом від супротивного так, як ми це робили при доведенні єдиності різниці. Припустимо, що частка не єдина, тобто існує принаймні дві частки. Нехай а:b=с1 і а:b=с2, причому с1¹с2. Згідно означення частки маємо а=bс1 і а=bс2. Звідси 1=bс2. Отже, с12, а це суперечить вибору чисел с1 і с2. Ця суперечність дозволяє стверджувати, що наше припущення про не єдиність частки було хибним. Таким чином, якщо частка існує, то вона єдина. Теорему доведено.

 

10. У процесі практичної діяльності людині чи не частіше доводиться зустрічатися з операцією ділення з остачею, ніж з операцією ділення націло. Саме тому, введемо означення такої операції та покажемо, що вона існує і єдина.

Означення: ціле невід’ємне число а ділиться на натуральне число b з остачею, якщо існують такі цілі невід’ємні числа q і r, що виконуються умови: 1) а=bq+r; 2) 0£r£b.

У наведеному означенні нічого не говориться про існування та єдиність такої операції, а тому слід довести наступну теорему.

Теорема 12: для будь-якого цілого невід’ємного числа а і натурального числа b існує і причому єдина пара цілих невід’ємних чисел q і r таких, що а=bq+r, де 0£r£b.

Доведення:

Доведення цієї теореми буде складатися із двох частин. У першій частині доведемо існування таких чисел, тобто існування операції ділення з остачею, а у другій – її єдиність. Між числами а і b може існувати лише одне із співвідношень: 1) а<b; 2) а=b; 3) а>b. Якщо а<b, то а=b×0+а, де q=0 і r=а. Отже, умови виконуються, тобто такі числа існують. Якщо а=b, то а=b×1+0, де q=1 і r=0. Таким чином, умови також виконуються, тобто такі числа існують. Якщо а>b, то можливі два випадки: а) а ділиться націло на b; б) а не ділиться націло на b. У першому випадку згідно означення частки існує деяке число q таке, що а=b×q, тобто а=b×q+0. Таким чином, в усіх розглянутих випадках числа q і r існують.

Розглянемо випадок, коли а не ділиться націло на b. Утворимо послідовність чисел b×1, b×2, b×3,..., b×q, b×(q+1), ..., b×а, ... Серед цих чисел , які діляться націло на b, знайдуться два послідовних числа такі, що b×q<а<b×(q+1), або b×q<а<b×q+b. Якщо від усіх частин останньої нерівності відняти b×q, то одержимо нерівність 0<а-b×q<b. Позначивши а-b×q=r, дістанемо: а=b×q+r, де 0<r<b. Таким чином, і в цьому випадку числа q і r існують. Отже, існування частки і остачі доведено.

Доведемо, що частка і остача єдині. Припустимо, що існує дві пари чисел q1, r1, q2, r2 таких, що а=b×q1+r1, де 0<r1<b, і а=b×q2+r2, де 0<r2<b, q1¹q2 і r1¹r2. Звідси b×q1+r1=b×q2+r2. Оскільки r1¹r2., то виберемо для визначеності, що r1£r2. Тоді b×(q1-q2)=r2-r1. Із того, що вираз b×(q1-q2) ділиться націло на b, випливає, що і вираз r2-r1 ділиться націло на b. Оскільки 0£r2-r1<b, то вираз r2-r1 може ділитися націло на b лише в тому випадку, коли r2-r1=0, тобто r2=r1. Звідси випливає, що b×(q1-q2)=0. Оскількиb¹0, то q1-q2=0, тобто q1=q2. Таким чином, ми прийшли до суперечностей із вибором чисел q1, r1, q2, r2. Ця суперечність дозволяє твердити, що припущення про не єдиність частки і остачі було хибним. Отже, теорему доведено повністю.

 

Завдання для самоконтролю та самостійної роботи студентів за змістовним модулем 3.1.

1. Сформулюйте означення відношення “більше” на множині цілих невід’ємних чисел у кількісній теорії цих чисел.

2. Довести комутативний закон операції додавання у теоретико-множинній теорії.

3. Довести переставний і сполучний закони операції множення у теоретико-множинній теорії.

 


Читайте також:

  1. I. Органи і системи, що забезпечують функцію виділення
  2. III. За виділенням або поглинанням енергії
  3. VII. Професійна кооперація
  4. VII. Філо- та онтогенез органів виділення
  5. АЛЬТЕРНАТИВНІ ПІДХОДИ ДО ВИДІЛЕННЯ МЕТОДІВ УПРАВЛІННЯ
  6. Антропогенез – процес виділення людини з тваринного святу, олюднення мавпи під впливом суспільної практики.
  7. Антропогенез – процес виділення людини з тваринного святу, олюднення мавпи під впливом суспільної практики.
  8. Б – розділення гелю на дві фази
  9. Валютна позиція банку та її врахування в бухгалтерських записах за операціями в іноземній валюті
  10. Введення чисел.
  11. Вивчення оборотності оборотних коштів у зовнішньоторгових операціях.
  12. ВИВЧЕННЯ ПОГЛИНАННЯ ЛИСТКАМИ СО2 І ВИДІЛЕННЯ О2 ПІД ДІЄЮ СВІТЛА




Переглядів: 2434

<== попередня сторінка | наступна сторінка ==>
Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони). | Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.006 сек.